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Abstract

In this paper, stability conditions of the Lorenz system at the second equilibrium

peint are investigated by applying Gardano~s method where the system has three equilibria
points. Most of the previous work focused their studies at the eriginal point. A few studies
demenstrated stability of dynamical systems at another equilibria points by use of conventional
techniques. However, it is often unclear and based on numerical methods. This reason,
motivate us to establish the stability conditions of the Lorenz system at a point which different
from the origin point and compare between them. Finally, An illustrative example shows the
effectiveness and feasibility of this method. (Approx. 104 words)
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Abstract. In this paper, stability conditions of the Lorenz system at the second equilibrium
point are investigated by applying Gardano's method where the system has three equilibria
points. Most of the previous work focused their studies at the original point. A few studies
demonstrated stability of dynamical systems at another equilibria points by use of conventional
techniques. However, it is often unclear and based on numerical methods. This reason,
motivate us to establish the stability conditions of the Lorenz system at a point which different
from the origin point and compare between them. Finally, An illustrative example shows the
effectiveness and feasibility of this method.

1. Introduction

In 1963, Lorenz found the first chaotic system, which is a third order autonomous system with only
two multiplication-type quadratic terms, but displays very complex dynamical behaviors [1,2]. By
definition Vanecek and Celikovsky the Lorenz system satisfies the condition aizaz: > 0, where ai:
and a1 are corresponding elements in the constant matrix A = (aij)3x3 for the linear part of system
[3].

Lorenz system is not integrable and it is difficult to find an analytical solution for this system in
three dimension parameters space, but special cases for Lorenz system are studied before studying
periodic solutions, and Lorenz studied the system when ¢ = 10, § = 8/3. From the definition of
equilibrium points, it is easy to verify that, when r < 1 the Lorenz system has only one equilibrium
point, which is the origin, but when » > 1 it has three equilibria points: E1(0,0,0)

E23(+VB(r — 1), +VB(r — 1), r — 1) [4,5], The Lorenz system has some simple properties such
that this system has natural symmetry (x,y,z) = (-x,-y,z) and the z-axis is invariant [6,7].

[8,9] discussed the stability of Lorenz system about the equilibria points, and found the roots
of characteristic equation for this system at origin, but at the second equilibrium  point
E2(WB(r—1),VB(r—1),r — 1), the Ref [3] used Routh-Hurwitz test to investigated the stability
without founding the roots, the Routh-Hurwitz paly important role in stability of dynamical systems
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[10], while the Ref [5] depended on the value of r to investigated the stability without founding the
roots.

In [9] studied the stability for system derived from the Lorenz system and depended on the roots to
determine the stability at origin, The determination of the roots of a cubic equation in general is fairly
difficult, but in the given case, one root is easily found [11]. We can find the roots of equations for
third degree by numerical method, and these roots are proximal (not exact), but by using Gardano's
method on the same equations we can find exact roots, and by these roots we can investigated the
stability for any system.

In this paper, the stability conditions of Lorenz system at the second equilibrium point E; is
established by using the general formula Gardano's method to find the roots of the characteristic
equation for this system. The Lorenz system is described by:

x = oy — x)
{y=rx-y-xz (1)
Z =xy — Bz

Where o,r, 8 are positive parameters. Figure 1 and Figure 2 shows the attractors of the system (1).
The approximating linear system (1) at E; is:
X -0 o© 0 x
yI=[r -1 0]ly] )
z 0 0 —-B z
or the characteristic equation of the form:

AB4+al2+bA+c=0 (3)
Then
a=oc+p+1
{b=B(c+1)+0(1—-1) 4)
c=Bo(1l—-r)
The solutions of Eq. 3 are
M2 =t-0—1+V(o— 1+ 4or ], A =B (5)

Now consider the system (1) at second equilibrium point E2(vVB(r — 1), VB(r — 1) ,r — 1), Under the
linear transformations (x,y,z) - (XY, Z),

x=X+VB(r—1)
ly=Y+VB(r—1) (6)
z=7Z+(r—-1)

The system (1) becomes

X=—-0X+o0oY
{ Y=X-Y-VB(r—-1)Z @)
Z=VBr—-DX+VB(r—-1)Y-BZ

The approximating linear system (1) at equilibrium point E; is:

X —0 o 0
Y= 1 -1 —VBr-D|
Z VB(r—1) VB(r-1) —-B

And the characteristic equation of the form:

(8)
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AMB4+aA2+biA+ci =0

Then
a=a=0c+fp+1
{b1 = B(c+r)

c1=2Bo(r—1)
0
40
0.

N
20
10.
o; .
507 S
o R
0 35 10 o b *
y X

Figure 1 The attractor of system (1) in x,y, z space.

Time(sec)

Figure 2 The attractor of system (1).
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2. Helping results
Remark 1[5]:
When ¢ = 10, 8 = 8/3, the solutions of equation (9) depend on the parameter r as follows:
1- Forl<r<rs= 13456, there are three negative real roots,
2- Forri <r <r;=24.737, there are one negative real root and two complex roots with negative
real parts,
3- For r > r, there are one negative real root and two complex roots with positive real parts.

Remark 2[4]:

Let A bea n X n matrix of constants. A equilibrium point for the system X = Ax is
o aymptotically stable if all roots of A has negative real parts
e unstable if A has at least one root with a positive real parts.

Remark 3[10]: Critical case
In critical cases when the real parts of all roots of the characteristic equation are non positive, with
the real part of at least one root being zero.

Remark 4[3]: Critical value
Lorenz system has critical value which is r, =1 at origin and ¢ =AU_;&131 at the second
o—p—

equilibrium point, and this system is asymptotically stable if r lies between 1 and a critical value r. at

E.(VB(r—1),Vp(r—1),r—1).

Let us denote

q==c —§131b1 +2_27 a3 (11)
A= c12 + 4 bi3 —2ajbici — L a:12b12 + 4 ai3cy (12)
27 3 27 27

We will use the following theorem, which enables us to find the exact roots for cubic equation (three
degree).

Theorem 1[12, 13]: (Gardano's method)

e If A= 0, then the second term of equation (9) has three roots, but one is multiple:

A :—2?{/&—“—1, A _31_a_1 (13)
1 2 3 237 Y2 3
e If A <0, then the equation (10) has three different real roots as:
cos 1=+ 2ni
. \/gZ—A .
Ai+1 — 6\/16((]2 _ A) c ——5 —%, i=0,1,2. (14)

e If A> 0, then the equation (10) has one real root and two complexes conjugate roots with
non-vanishing imaginary parts as:

( _3/=a=VE | 3[—qt/E a

| A = v 2 T v 2 3

{ }\ — _l (3\/_q_\/A—+ i/—q+\/A‘) _a + lﬁ_(i/_q_\[&_ ?{/_Q"'\/A_)
2 2 2

2 2 3 2 2 (15)
| }\3 = —f(if_q"/5+ 3{/"”\/5) —_a_ i\/_3_(3\/—q—x/A__ 3-aHAN
2 3 2 2 2

2 2
1



3. Main results:
Corollary 1: If 6 = 10,8 = 8/3 and
e r =r1,then we have three negative real roots.
e 11 =12, then we have one negative real root and two complex roots with vanishing real parts.

Theorem 2: The solutions of system (1) at second point E.(VA(r — 1) ,¥B(r — 1) ,r — 1) when ¢ =
10,5 = 8/3 are:
e Asymptotically stable if the following cases hold:
(M A<O andr € (1,71]
(i) A>0 and r € (ry,12)
e Unstableif A>0 andr € (rz, )
e Critical caseif A>0 and r =1,

Proof:
Case 1: By theorem (1) when A < 0 we obtain:
A1, A2, Az are different real roots and these roots are negative when 1 < r < r1, (by
Remark 1.1 and corollaryl.1), hence satisfied Remark 2.1, therefore the system (1) is asymptotically
stable,

When A > 0 we obtain:
A1 is a real root and Az, As are complex conjugate roots and these roots are negative (negative real
parts) when and r € (ry, r2) and satisfied remark 2.1, therefore the system (1) is asymptotically stable.
Case 2: when A >0, we have A;is areal root and Az, A; are complex conjugate roots and by
remark 1.3.When r € (rz, =), we obtain that A; is negative and A, Az are positive real part, hence
satisfied remark 2,2 , therefore the system (1) is unstable.
Case 3: When r = r, we have A; is negative real root and Re A, = Re A3 = 0 (Corollaryl.2) and
satisfied remark 3, hence the system (1) is a critical case, the proof is complete.

We can generalization Theorem (2) for any value of ¢ and B in the following theorem
Theorem 3:The solutions of system (1) at second critical point E2(vVB(r — 1) ,VB(r — 1) ,r — 1) are:
o Asymptotically stable if the following cases hold:
i A<O0 , AA3<0
(i) A>0 , ReX<O0
e Unstable if A>0,ReX; >0
Critical caseif A>0,ReA; >0

Proof:

Case 1. By theorem (1) when A < 0 we obtain: a three different real roots and A, As are negative
(given), we must prove that A; is negative, Since the cubic equation (10) has a positive coefficients
therefore, then at least one of these roots is negative real part, hence satisfied remark 2,1 and the
system (1) is asymptotically stable,

When A > 0, then we have Re A3 < 0 also since Re A; = Re A3 (two complex conjugate roots)
and A, is negative real root (cubic equation with positive coefficients must have a negative real root),
then we have one negative real root and complex roots with negative real part, hence the system (1) is
asymptotically stable.



Case 2. By the same theorem when A > 0, we have Re A3 > 0 since ReA; = Re A3

(analogously as in proof of case 1) and A is negative real root, then we have one negative real root
and two complex roots with positive real part, hence satisfied remark 2,2 , the system (1) is unstable.
Case 3. when A> 0 and Re A, = 0, then Re A3 = 0 and A1 is negative real part, hence satisfied remark
3, the system (1) is a critical case, the proof is complete.

Proposition:
The necessary and sufficient condition for a second critical point whose parameter o is greater
than the parameter S plus one .

Proof:
1- If o = B then critical value become r. = —a (o + B + 3), (contradictions) since r. must larger
then 1.
2- If o < B then denominator of critical value is always negative therefore r.is a negative

(contradictions) the same reason of the first case.

3- If 0 > B, then critical value is positive and larger then 1(possible), but if o = 8 + 1 then
critical value become r. = £(0—+8‘L31 (contradictions) not allowed dividing on a zero, therefore
wemust g > S + 1 only.

4. Comparison
The following Table 1 distinguish the most important differences between the first critical point
E1(0,0,0) and the second point E2(VB(r — 1) ,VB(r — 1) ,r — 1).

Table 1 Comparison between equilibria points: E4, E-

Nu At E1(0,0,0) Nu. E:(VB(r—1) NB(r—1),r — 1),
1-  ris any number larger then zero 1-  ris any number larger then one
2-  Acritical value is fixed 2-  Acritical value is not fixed, changes with
the initial data o, 8
3- ltiseasy to determinationoneroot A =  3- It is difficult to determine one root
-B
4-  Contain only real roots 4-  Contain real and complex roots
5-  Not all coefficients of characteristics 5- all coefficients of characteristics equation
equation are positive are positive
6-  Asymptotically stable when r € (0,1) 6-  Asymptotically stable when r € (1,7.)
7-  Unstable when r € (1, ) 7-  Unstable when r € (r, o)
8-  Critical case whenr =1 8-  Critical case whenr =r.
9- o=F,0<B, o> 9- o>pF+1 only
10 - g may by negative or positive or zero 10 q is a positive only
11- A may by negative or zero 11- A may by negative or positive
12 - Contain on multiple real roots 12 - Not contain on multiple real roots

Figures 3, 4 show the stability at equilibria points E4, E, respectively.



Critical case

Asymptotically 1 unstable
Stable
l: > >
| | g
1
0
Figure 3 Stability at £1(0,0,0)
Critical case
Asymptotically stable l unstable
| | -~
| | -
0 1 r,

Figure 4 Stability at E,(VB(r — 1) ,VB(r —1),r — 1)

5. Hlustrative Examples:
In this section, we take two different systems, for example to show how to use the results obtained in
this paper to analyze the stability of class chaotic systems.

Example 1: Investigate for stability of the following Lorenz system
x =—10x + 10y
{(y= 11lx—y—xz
Z=Xxy— %Z

The characteristic equation of Lorenz system is of the form: A3 +41 A2 + 564 + 1600 = (

3 3
q = 22898, A= 436677 > (), 11 € (r,r2) and Ay = —1807 Ay = — 1961 4 1634,
49 2 150 ! 2421 7 235

Then the system (1) is asymptotically stable

In case r = 100
The characteristic equation of Lorenz system is of the form; A3 + 4112 48804 + 5280 = 0

3 3
q = 5789 ,A= 18907821 > 0, 100 € (r,0) and A; = —8407 5  _ 564 2485,
14 526 237 487 137

Then the system (1) is unstable. Figure 5 and figure 6 show the attractors of system(1) when o =
10,8 =8/3, (a) r = 11, (b) r = 100.

Example 2: Investigate for stability of the following Lorenz system

x==7x+7y
{y= %x -y —xz
z=xy—4z
The characteristic equation of Lorenz system is of the form: A3 + 1242 + 344+ 28 = 0
q=20, A=-16<0, 3€(Lr) and Ay =-2 ,hp=-205 5 _ 3152
27 2 1197 379

Then the system (1) is asymptotically stable



fw =11 B or=10

Figure 5 The attractor of system(1) wheno = 10,8 = 8/3 (@) r = 11, (b) r = 100

wor=n (bl =130

0 | 12 t 8 5 7 R 1 : @ e b & ? 8
Timalsen) Tilrefyes)

Figure 6 The attractor of system(1) convergent to zero when o = 10,8 = 8/3
@r =11, (b) r =100

In case r =49

The characteristic equation of Lorenz system is of the form: A3 + 1242 4+ 2241 + 2688 = 0
g = 1920, A= 4494071 > 0, 49 =71, and Ay = —12 , Ay3 = ilgg%-“—i
Then the system (1) is a critical case. Figure 7 and figure 8 show the attractors of system(1) when ¢ =
7,8 =4,(@@)r=3/2,(b)r=49.

6. Conclusions

In this paper, we have investigated the stability of Lorenz system at the second critical point by using a
new method. By this method we justified the same results which found by previous methods. An
illustrative examples show the effectiveness and feasibility of this method.
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Abstract. In this paper, stability conditions of the Lorenz system at the second equilibrium
point are investigated by applying Gardano's method where the system has three equilibria
points. Most of the previous work focused their studies at the original point. A few studies
demonstrated stability of dynamical systems at another equilibria points by use of conventional
techniques. However, it is often unclear and based on numerical methods. This reason,
motivate us to establish the stability conditions of the Lorenz system at a point which different
from the origin point and compare between them. Finally, An illustrative example shows the
effectiveness and feasibility of this method.

1. Introduction

In 1963, Lorenz found the first chaotic system, which is a third order autonomous system with only
two multiplication-type quadratic terms, but displays very complex dynamical behaviors [1,2]. By
definition Vanecek and Celikovsky the Lorenz system satisfies the condition aizaz: > 0, where ai:
and a1 are corresponding elements in the constant matrix A = (aij)3x3 for the linear part of system
[3].

Lorenz system is not integrable and it is difficult to find an analytical solution for this system in
three dimension parameters space, but special cases for Lorenz system are studied before studying
periodic solutions, and Lorenz studied the system when ¢ = 10, § = 8/3. From the definition of
equilibrium points, it is easy to verify that, when r < 1 the Lorenz system has only one equilibrium
point, which is the origin, but when » > 1 it has three equilibria points: E1(0,0,0)

E23(+VB(r — 1), +VB(r — 1), r — 1) [4,5], The Lorenz system has some simple properties such
that this system has natural symmetry (x,y,z) = (-x,-y,z) and the z-axis is invariant [6,7].

[8,9] discussed the stability of Lorenz system about the equilibria points, and found the roots
of characteristic equation for this system at origin, but at the second equilibrium  point
E2(WB(r—1),VB(r—1),r — 1), the Ref [3] used Routh-Hurwitz test to investigated the stability
without founding the roots, the Routh-Hurwitz paly important role in stability of dynamical systems

1
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[10], while the Ref [5] depended on the value of r to investigated the stability without founding the
roots.

In [9] studied the stability for system derived from the Lorenz system and depended on the roots to
determine the stability at origin, The determination of the roots of a cubic equation in general is fairly
difficult, but in the given case, one root is easily found [11]. We can find the roots of equations for
third degree by numerical method, and these roots are proximal (not exact), but by using Gardano's
method on the same equations we can find exact roots, and by these roots we can investigated the
stability for any system.

In this paper, the stability conditions of Lorenz system at the second equilibrium point E; is
established by using the general formula Gardano's method to find the roots of the characteristic
equation for this system. The Lorenz system is described by:

x = oy — x)
{y=rx-y-xz (1)
Z =xy — Bz

Where o,r, 8 are positive parameters. Figure 1 and Figure 2 shows the attractors of the system (1).
The approximating linear system (1) at E; is:
X -0 o© 0 x
yI=[r -1 0]ly] )
z 0 0 —-B z
or the characteristic equation of the form:

AB4+al2+bA+c=0 (3)
Then
a=oc+p+1
{b=B(c+1)+0(1—-1) 4)
c=Bo(1l—-r)
The solutions of Eq. 3 are
M2 =t-0—1+V(o— 1+ 4or ], A =B (5)

Now consider the system (1) at second equilibrium point E2(vVB(r — 1), VB(r — 1) ,r — 1), Under the
linear transformations (x,y,z) - (XY, Z),

x=X+VB(r—1)
ly=Y+VB(r—1) (6)
z=7Z+(r—-1)

The system (1) becomes

X=—-0X+o0oY
{ Y=X-Y-VB(r—-1)Z @)
Z=VBr—-DX+VB(r—-1)Y-BZ

The approximating linear system (1) at equilibrium point E; is:

X —0 o 0
Y= 1 -1 —VBr-D|
Z VB(r—1) VB(r-1) —-B

And the characteristic equation of the form:

(8)

NS <



AMB4+aA2+biA+ci =0

Then
a=a=0c+fp+1
{b1 = B(c+r)

c1=2Bo(r—1)
0
40
0.

N
20
10.
o; .
507 S
o R
0 35 10 o b *
y X

Figure 1 The attractor of system (1) in x,y, z space.

Time(sec)

Figure 2 The attractor of system (1).

9)
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2. Helping results
Remark 1[5]:
When ¢ = 10, 8 = 8/3, the solutions of equation (9) depend on the parameter r as follows:
1- Forl<r<rs= 13456, there are three negative real roots,
2- Forri <r <r;=24.737, there are one negative real root and two complex roots with negative
real parts,
3- For r > r, there are one negative real root and two complex roots with positive real parts.

Remark 2[4]:

Let A bea n X n matrix of constants. A equilibrium point for the system X = Ax is
o aymptotically stable if all roots of A has negative real parts
e unstable if A has at least one root with a positive real parts.

Remark 3[10]: Critical case
In critical cases when the real parts of all roots of the characteristic equation are non positive, with
the real part of at least one root being zero.

Remark 4[3]: Critical value
Lorenz system has critical value which is r, =1 at origin and ¢ =AU_;&131 at the second
o—p—

equilibrium point, and this system is asymptotically stable if r lies between 1 and a critical value r. at

E.(VB(r—1),Vp(r—1),r—1).

Let us denote

q==c —§131b1 +2_27 a3 (11)
A= c12 + 4 bi3 —2ajbici — L a:12b12 + 4 ai3cy (12)
27 3 27 27

We will use the following theorem, which enables us to find the exact roots for cubic equation (three
degree).

Theorem 1[12, 13]: (Gardano's method)

e If A= 0, then the second term of equation (9) has three roots, but one is multiple:

A :—2?{/&—“—1, A _31_a_1 (13)
1 2 3 237 Y2 3
e If A <0, then the equation (10) has three different real roots as:
cos 1=+ 2ni
. \/gZ—A .
Ai+1 — 6\/16((]2 _ A) c ——5 —%, i=0,1,2. (14)

e If A> 0, then the equation (10) has one real root and two complexes conjugate roots with
non-vanishing imaginary parts as:

( _3/=a=VE | 3[—qt/E a

| A = v 2 T v 2 3

{ }\ — _l (3\/_q_\/A—+ i/—q+\/A‘) _a + lﬁ_(i/_q_\[&_ ?{/_Q"'\/A_)
2 2 2

2 2 3 2 2 (15)
| }\3 = —f(if_q"/5+ 3{/"”\/5) —_a_ i\/_3_(3\/—q—x/A__ 3-aHAN
2 3 2 2 2

2 2
1



3. Main results:
Corollary 1: If 6 = 10,8 = 8/3 and
e r =r1,then we have three negative real roots.
e 11 =12, then we have one negative real root and two complex roots with vanishing real parts.

Theorem 2: The solutions of system (1) at second point E.(VA(r — 1) ,¥B(r — 1) ,r — 1) when ¢ =
10,5 = 8/3 are:
e Asymptotically stable if the following cases hold:
(M A<O andr € (1,71]
(i) A>0 and r € (ry,12)
e Unstableif A>0 andr € (rz, )
e Critical caseif A>0 and r =1,

Proof:
Case 1: By theorem (1) when A < 0 we obtain:
A1, A2, Az are different real roots and these roots are negative when 1 < r < r1, (by
Remark 1.1 and corollaryl.1), hence satisfied Remark 2.1, therefore the system (1) is asymptotically
stable,

When A > 0 we obtain:
A1 is a real root and Az, As are complex conjugate roots and these roots are negative (negative real
parts) when and r € (ry, r2) and satisfied remark 2.1, therefore the system (1) is asymptotically stable.
Case 2: when A >0, we have A;is areal root and Az, A; are complex conjugate roots and by
remark 1.3.When r € (rz, =), we obtain that A; is negative and A, Az are positive real part, hence
satisfied remark 2,2 , therefore the system (1) is unstable.
Case 3: When r = r, we have A; is negative real root and Re A, = Re A3 = 0 (Corollaryl.2) and
satisfied remark 3, hence the system (1) is a critical case, the proof is complete.

We can generalization Theorem (2) for any value of ¢ and B in the following theorem
Theorem 3:The solutions of system (1) at second critical point E2(vVB(r — 1) ,VB(r — 1) ,r — 1) are:
o Asymptotically stable if the following cases hold:
i A<O0 , AA3<0
(i) A>0 , ReX<O0
e Unstable if A>0,ReX; >0
Critical caseif A>0,ReA; >0

Proof:

Case 1. By theorem (1) when A < 0 we obtain: a three different real roots and A, As are negative
(given), we must prove that A; is negative, Since the cubic equation (10) has a positive coefficients
therefore, then at least one of these roots is negative real part, hence satisfied remark 2,1 and the
system (1) is asymptotically stable,

When A > 0, then we have Re A3 < 0 also since Re A; = Re A3 (two complex conjugate roots)
and A, is negative real root (cubic equation with positive coefficients must have a negative real root),
then we have one negative real root and complex roots with negative real part, hence the system (1) is
asymptotically stable.



Case 2. By the same theorem when A > 0, we have Re A3 > 0 since ReA; = Re A3

(analogously as in proof of case 1) and A is negative real root, then we have one negative real root
and two complex roots with positive real part, hence satisfied remark 2,2 , the system (1) is unstable.
Case 3. when A> 0 and Re A, = 0, then Re A3 = 0 and A1 is negative real part, hence satisfied remark
3, the system (1) is a critical case, the proof is complete.

Proposition:
The necessary and sufficient condition for a second critical point whose parameter o is greater
than the parameter S plus one .

Proof:
1- If o = B then critical value become r. = —a (o + B + 3), (contradictions) since r. must larger
then 1.
2- If o < B then denominator of critical value is always negative therefore r.is a negative

(contradictions) the same reason of the first case.

3- If 0 > B, then critical value is positive and larger then 1(possible), but if o = 8 + 1 then
critical value become r. = £(0—+8‘L31 (contradictions) not allowed dividing on a zero, therefore
wemust g > S + 1 only.

4. Comparison
The following Table 1 distinguish the most important differences between the first critical point
E1(0,0,0) and the second point E2(VB(r — 1) ,VB(r — 1) ,r — 1).

Table 1 Comparison between equilibria points: E4, E-

Nu At E1(0,0,0) Nu. E:(VB(r—1) NB(r—1),r — 1),
1-  ris any number larger then zero 1-  ris any number larger then one
2-  Acritical value is fixed 2-  Acritical value is not fixed, changes with
the initial data o, 8
3- ltiseasy to determinationoneroot A =  3- It is difficult to determine one root
-B
4-  Contain only real roots 4-  Contain real and complex roots
5-  Not all coefficients of characteristics 5- all coefficients of characteristics equation
equation are positive are positive
6-  Asymptotically stable when r € (0,1) 6-  Asymptotically stable when r € (1,7.)
7-  Unstable when r € (1, ) 7-  Unstable when r € (r, o)
8-  Critical case whenr =1 8-  Critical case whenr =r.
9- o=F,0<B, o> 9- o>pF+1 only
10 - g may by negative or positive or zero 10 q is a positive only
11- A may by negative or zero 11- A may by negative or positive
12 - Contain on multiple real roots 12 - Not contain on multiple real roots

Figures 3, 4 show the stability at equilibria points E4, E, respectively.
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Asymptotically 1 unstable
Stable
l: > >
| | g
1
0
Figure 3 Stability at £1(0,0,0)
Critical case
Asymptotically stable l unstable
| | -~
| | -
0 1 r,

Figure 4 Stability at E,(VB(r — 1) ,VB(r —1),r — 1)

5. Hlustrative Examples:
In this section, we take two different systems, for example to show how to use the results obtained in
this paper to analyze the stability of class chaotic systems.

Example 1: Investigate for stability of the following Lorenz system
x =—10x + 10y
{(y= 11lx—y—xz
Z=Xxy— %Z

The characteristic equation of Lorenz system is of the form: A3 +41 A2 + 564 + 1600 = (

3 3
q = 22898, A= 436677 > (), 11 € (r,r2) and Ay = —1807 Ay = — 1961 4 1634,
49 2 150 ! 2421 7 235

Then the system (1) is asymptotically stable

In case r = 100
The characteristic equation of Lorenz system is of the form; A3 + 4112 48804 + 5280 = 0

3 3
q = 5789 ,A= 18907821 > 0, 100 € (r,0) and A; = —8407 5  _ 564 2485,
14 526 237 487 137

Then the system (1) is unstable. Figure 5 and figure 6 show the attractors of system(1) when o =
10,8 =8/3, (a) r = 11, (b) r = 100.

Example 2: Investigate for stability of the following Lorenz system

x==7x+7y
{y= %x -y —xz
z=xy—4z
The characteristic equation of Lorenz system is of the form: A3 + 1242 + 344+ 28 = 0
q=20, A=-16<0, 3€(Lr) and Ay =-2 ,hp=-205 5 _ 3152
27 2 1197 379

Then the system (1) is asymptotically stable



fw =11 B or=10

Figure 5 The attractor of system(1) wheno = 10,8 = 8/3 (@) r = 11, (b) r = 100

wor=n (bl =130

0 | 12 t 8 5 7 R 1 : @ e b & ? 8
Timalsen) Tilrefyes)

Figure 6 The attractor of system(1) convergent to zero when o = 10,8 = 8/3
@r =11, (b) r =100

In case r =49

The characteristic equation of Lorenz system is of the form: A3 + 1242 4+ 2241 + 2688 = 0
g = 1920, A= 4494071 > 0, 49 =71, and Ay = —12 , Ay3 = ilgg%-“—i
Then the system (1) is a critical case. Figure 7 and figure 8 show the attractors of system(1) when ¢ =
7,8 =4,(@@)r=3/2,(b)r=49.

6. Conclusions

In this paper, we have investigated the stability of Lorenz system at the second critical point by using a
new method. By this method we justified the same results which found by previous methods. An
illustrative examples show the effectiveness and feasibility of this method.
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Abstract. In this paper, stability conditions of the Lorenz system at the second equilibrium
point are investigated by applying Gardano's method where the system has three equilibria
points. Most of the previous work focused their studies at the original point. A few studies
demonstrated stability of dynamical systems at another equilibria points by use of conventional
techniques. However, it is often unclear and based on numerical methods. This reason,
motivate us to establish the stability conditions of the Lorenz system at a point which different
from the origin point and compare between them. Finally, An illustrative example shows the
effectiveness and feasibility of this method.

1. Introduction

In 1963, Lorenz found the first chaotic system, which is a third order autonomous system with only
two multiplication-type quadratic terms, but displays very complex dynamical behaviors [1,2]. By
definition Vanecek and Celikovsky the Lorenz system satisfies the condition a;,a,; > 0, where a;,
and a,; are corresponding elements in the constant matrix A = (a;j)3x3 for the linear part of system
[3].

Lorenz system is not integrable and it is difficult to find an analytical solution for this system in
three dimension parameters space, but special cases for Lorenz system are studied before studying
periodic solutions, and Lorenz studied the system when o = 10, = 8/3. From the definition of
equilibrium points, it is easy to verify that, when r < 1 the Lorenz system has only one equilibrium
point, which is the origin, but when r >1 it has three equilibria points: E;(0,0,0)
E,3(£{JB(r — 1), +/B(r —1),r — 1) [4,5], The Lorenz system has some simple properties such
that this system has natural symmetry (x,y,z) = (-X,-y,z) and the z-axis is invariant [6,7].

[8,9] discussed the stability of Lorenz system about the equilibria points, and found the roots
of characteristic equation for this system at origin, but at the second equilibrium point
Ez(\/ B(r— 1),\/ B(r—1),r —1), the Ref [3] used Routh-Hurwitz test to investigated the stability
without founding the roots, the Routh-Hurwitz paly important role in stability of dynamical systems

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1
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[10], while the Ref [5] depended on the value of r to investigated the stability without founding the
roots.

In [9] studied the stability for system derived from the Lorenz system and depended on the roots to
determine the stability at origin, The determination of the roots of a cubic equation in general is fairly
difficult, but in the given case, one root is easily found [11]. We can find the roots of equations for
third degree by numerical method, and these roots are proximal (not exact), but by using Gardano's
method on the same equations we can find exact roots, and by these roots we can investigated the
stability for any system.

In this paper, the stability conditions of Lorenz system at the second equilibrium point E, is
established by using the general formula Gardano's method to find the roots of the characteristic
equation for this system. The Lorenz system is described by:

x=0(y—x)
y=T1X—y—XZ @)
Z=xy— Bz

Where o, 1,3 are positive parameters. Figure 1 and Figure 2 shows the attractors of the system (1).
The approximating linear system (1) at E; is:

X -0 o 07
[y]:[r -1 OHy] 2)
7 0 0 -—-pllz
or the characteristic equation of the form:
AB+ar2+br+c=0 3)
Then
a=o+p+1
b=p(c+1)+0c(1—-r) @)
c=Bo(l1-r)
The solutions of Eq. 3 are
)\1,2=%[—0—1i\/(0—1)2+40r ] As = —B (5)

Now consider the system (1) at second equilibrium point E, (\/ B(r—1), \/ B(r—1),r — 1), Under the
linear transformations (x,y,z) = (X,Y,Z),

x=X+,Br—-1)

Y=Y+ /BE=D ©)

z=7Z+(r—-1)
The system (1) becomes

X =—0X+oY
Y=X-Y-{Br—-11Z (7)

Z=Br—1DX+/Blr—1)Y—pZ

The approximating linear system (1) at equilibrium point E, is:

—0 o

X 0 X
gl=| 1 -1 —/BCr-D Y] ®)
zl -1 JBr-1) I L

And the characteristic equation of the form:
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AB+a;A2+bA+c; =0
Then
a=a; =0+p+1
b; =B(c +71)
¢ =2Bo(r—1)

1477 (2020) 022009  doi:10.1088/1742-6596/1477/2/022009

®

(10)

e
£0 T D

Figure 1 The attractor of system (1) in x,y,z space.
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Figure 2 The attractor of system (1).



ICComSET 2019 IOP Publishing
Journal of Physics: Conference Series 1477 (2020) 022009  doi:10.1088/1742-6596/1477/2/022009

2. Helping results
Remark 1[5]:

When ¢ = 10,8 = 8/3, the solutions of equation (9) depend on the parameter r as follows:
1- Forl <r <mr = 1.3456, there are three negative real roots,

2- Forr <r <r,=24.737, there are one negative real root and two complex roots with negative
real parts,

3- For r > r, there are one negative real root and two complex roots with positive real parts.

Remark 2[4]:

Let A be a n X n matrix of constants. A equilibrium point for the system X = Ax is
e aymptotically stable if all roots of A has negative real parts
e unstable if A has at least one root with a positive real parts.

Remark 3[10]: Critical case
In critical cases when the real parts of all roots of the characteristic equation are non positive, with
the real part of at least one root being zero.

Remark 4[3]: Critical value
Lorenz system has critical value which is r. =1 at origin and r. = Gicj—[fjf)
equilibrium point, and this system is asymptotically stable if r lies between 1 and a critical value r. at

E,(WB(r—1),yBr—1),r—1).

at the second

Let us denote
1 2
q=c; —;ab; +--a,° (11
4 3 2 1 2 4
A= C12 + ;bl - galblcl - ;alzbl + 5313(:1 (12)

We will use the following theorem, which enables us to find the exact roots for cubic equation (three
degree).

Theorem 1[12, 13]: (Gardano's method)

e If A= 0, then the second term of equation (9) has three roots, but one is multiple:

=2l =l (13)

e If A <O, then the equation (10) has three different real roots as:

“1_29 _iop

2_
Ais1 = 16(Z — B) cos— B =012 (14)

e If A> 0, then the equation (10) has one real root and two complexes conjugate roots with
non-vanishing imaginary parts as:

_ 1 (3]|=q=VA | 3[-q+VA\ ay | VB[3[-q—VA 3|-q+JA
L (EE S o
1, = 1 i/—q—\/z+3\/—q+\/z a3 3\/—q—\/Z_3\/—q+\/Z
\3_ 2 2 2 3 ' 2 2

cos
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3. Main results:
Corollary 1: If 0 = 10, = 8/3 and
e 1 =1y, then we have three negative real roots.
e 1 =713, ,then we have one negative real root and two complex roots with vanishing real parts.

Theorem 2: The solutions of system (1) at second point E, (/B — 1) ,/B(r —1),7 — 1) when ¢ =
10,5 = 8/3 are:
e Asymptotically stable if the following cases hold:
(1) A<O and r € (1,1q]
(i1) A>0 and 7 € (1, 13)
e Unstableif A>0 and r € (ry, )
o C(Criticalcaseif A>0 and r =71,

Proof:
Case 1: By theorem (1) when A < 0 we obtain:
A1, A5, A5 are different real roots and these roots are negative when 1 < r < ry, (by
Remark 1.1 and corollaryl.1), hence satisfied Remark 2.1, therefore the system (1) is asymptotically
stable,

When A > 0 we obtain:
A, is a real root and A,,A; are complex conjugate roots and these roots are negative (negative real
parts) when and r € (rq, ;) and satisfied remark 2.1, therefore the system (1) is asymptotically stable.
Case 2: when A> 0, we have A; is a real root and A,,A3; are complex conjugate roots and by
remark 1.3.When r € (r,, o), we obtain that A; is negative and A,,A; are positive real part, hence
satisfied remark 2,2 , therefore the system (1) is unstable.

Case 3: When r =1, we have 2A; is negative real root and Re A, = ReA; = 0 (Corollaryl.2) and
satisfied remark 3, hence the system (1) is a critical case, the proof is complete.

We can generalization Theorem (2) for any value of o and f in the following theorem

Theorem 3:The solutions of system (1) at second critical point Ez(\/ B(r—1), \/ B(r—1),r—1) are:
o Asymptotically stable if the following cases hold:
i) A<O0 , AA3<0
(i) A>0 , ReA,; <0
e Unstable if A>0,Rer, >0
Critical caseif A>0,ReA, >0

Proof:

Case 1. By theorem (1) when A < 0 we obtain: a three different real roots and A,, A3 are negative
(given), we must prove that A; is negative, Since the cubic equation (10) has a positive coefficients
therefore, then at least one of these roots is negative real part, hence satisfied remark 2,1 and the
system (1) is asymptotically stable,

When A > 0, then we have Re A; < 0 also since Re A, = Re A3 (two complex conjugate roots)
and A, is negative real root (cubic equation with positive coefficients must have a negative real root),
then we have one negative real root and complex roots with negative real part, hence the system (1) is
asymptotically stable.
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Case 2. By the same theorem when A > 0, we have Re A; > 0 since Re A, = Re A3

(analogously as in proof of case 1 ) and A; is negative real root, then we have one negative real root
and two complex roots with positive real part, hence satisfied remark 2,2 , the system (1) is unstable.
Case 3. when A> 0 and ReA, = 0, then Re A; = 0 and 2, is negative real part, hence satisfied remark
3, the system (1) is a critical case, the proof is complete.

Proposition:
The necessary and sufficient condition for a second critical point whose parameter o is greater
than the parameter § plus one .

Proof:
1- If o = B then critical value become 7. = —g (0 + [ + 3), (contradictions) since 7, must larger
then 1.

2- If o < then denominator of critical value is always negative therefore 7, is a negative
(contradictions) the same reason of the first case.
3- If 0 > B, then critical value is positive and larger then 1(possible), but if o = f + 1 then

g(o+B+3)

critical value become 7, = , (contradictions) not allowed dividing on a zero, therefore

wemust 0 > [ + 1 only.

4. Comparison
The following Table 1 distinguish the most important differences between the first critical point
E;(0,0,0) and the second point E, (\/,B(T -1 ,\/,B(T -1, r—1).

Table 1 Comparison between equilibria points: Eq, E,

Nu. AtE;(0,0,0) Nu.  g,(/BG—1D,/Bor—D,r— 1),
I-  r is any number larger then zero 1- 7 is any number larger then one
2- A critical value is fixed 2- A critical value is not fixed, changes with
the initial data o, 8

3-  Itis easy to determination one root A =  3- It is difficult to determine one root
-B

4-  Contain only real roots 4-  Contain real and complex roots

5-  Not all coefficients of characteristics 5- all coefficients of characteristics equation
equation are positive are positive

6-  Asymptotically stable when r € (0,1) 6-  Asymptotically stable when r € (1,7;)

7-  Unstable when r € (1, ) 7-  Unstable when r € (7, )
8-  Critical case whenr = 1 8- Critical case whenr =1,
9- oc=f,0<B, o> 9- oc>f+1 only
10 - g may by negative or positive or zero 10 g is a positive only
11- A may by negative or zero 11- A may by negative or positive
12 - Contain on multiple real roots 12 - Not contain on multiple real roots

Figures 3, 4 show the stability at equilibria points E;, E, respectively.
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Critical case

Asymptotically 1 unstable
Stable
F—P‘ >
| | g
1
0
Figure 3 Stability at E;(0,0,0)
Critical case
Asymptotically stable l unstable
I | | ~
| | | -
0 1 r,

Figure 4 Stability at E,(y/f(r — 1),/ —1),r—1)

5. Illustrative Examples:
In this section, we take two different systems, for example to show how to use the results obtained in
this paper to analyze the stability of class chaotic systems.
Example 1: Investigate for stability of the following Lorenz system
x =—10x + 10y
y=1lx—y—xz

. 8
Z=xy =3z

. . . 41 1600

The characteristic equation of Lorenz system is of the form: A3 + ?AZ + 564+ - = 0
22898 436677 1807 1961 |, 1634 .
=2 A= 2 >0, 11 € (ry,75) and Al——m ’}\2'3__M_El

Then the system (1) is asymptotically stable

In caser =100

The characteristic equation of Lorenz system is of the form: A3 + 43—112 + %/1 +5280=0
= 378 A=18907821 >0, 100 € (rp,®) and A, = — o ), 5 = 0% 4 2295,
14 526 37487 — 137

Then the system (1) is unstable. Figure 5 and figure 6 show the attractors of system(1) when o =
10, =8/3 ,(a)r =11, (b) r = 100.

Example 2: Investigate for stability of the following Lorenz system

x=-7x+7y
y = %x —y—xz
z=xy—4z
The characteristic equation of Lorenz system is of the form: A3 + 124% + 344 + 28 = 0
=20 A——176<0 3E 1 d A =—2 A _ 2015 A _ 3152
q=20, A=—-—-<0, -€(lr) and Ay = A= - e

Then the system (1) is asymptotically stable
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iy =1 o or=10g

Figure 5 The attractor of system(1) when o = 10,8 =8/3 (a)r = 11, (b)r = 100

whor=1 b1 r=130

ip— - e - 1

—_—
ra —_— .

—y e |

L&

n R S SR T R S S R : & e« & & P
Timeser) Tiireees)
Figure 6 The attractor of system(1) convergent to zero when ¢ = 10,8 = 8/3
(ar=11, (b)r =100

In caser =49
The characteristic equation of Lorenz system is of the form: A3 + 1212 + 2241 + 2688 = 0

q=1920, A=4494071>0, 49=r, and & =—12 Ay =+
Then the system (1) is a critical case. Figure 7 and figure 8 show the attractors of system(1) when o =

7,8 =4 ,(@)r =3/2, (b)r = 49.

6. Conclusions

In this paper, we have investigated the stability of Lorenz system at the second critical point by using a
new method. By this method we justified the same results which found by previous methods. An
illustrative examples show the effectiveness and feasibility of this method.
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