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Abstract. A new 4-D hyperchaotic two-scroll system with three quadratic nonlinearities and a cubic nonlinearity 

is proposed in this paper. The dynamical properties of the new hyperchaotic system are described in terms of 

phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, symmetry, dissipativity, etc. We also establish 

that the new hyperchaotic system has multistability with coexisting attractors. As a control application, we use 

integral sliding mode control for active self-synchronization of the new hyperchaotic systems as master-slave 

systems. As an engineering application, an electronic circuit design of the new hyperchaotic two-scroll system is 
developed in MultiSIM, which confirms the feasibility of the system.  

 

Keywords: Chaos, hyperchaos, hyperchaotic systems, sliding mode control, synchronization, etc. 

1.  Introduction 

Chaos theory deals with nonlinear dynamical systems exhibiting high sensitivity to small changes in 

initial conditions [1-2]. Mathematically, chaotic systems are characterized by the presence of at least 
one positive Lyapunov exponent. Chaotic systems have applications in several engineering areas such 

as chemical reactors [3-4], neuron systems [5-6], mechanical systems [7-8], circuits [9-11], oscillators 

[12-13], neural networks [14-15], etc.  
Hyperchaotic systems are defined as chaotic systems having two or more positive Lyapunov 

exponents. The trajectories of hyperchaotic systems can expand in two different directions 

corresponding to the two positive Lyapunov exponents. Hyperchaotic systems have important 
engineering applications such as cryptosystems [16-17], secure communication systems [18-19], etc. 

In this work, we report a new 4-D hyperchaotic two-scroll system with three quadratic 

nonlinearities and a cubic nonlinearity. The dynamical properties of the new hyperchaotic system are 

described in terms of MATLAB phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, 
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symmetry, dissipativity, etc. We show that the new hyperchaotic system has three unstable rest points. 

Thus, the new system has self-excited two-scroll attractor. 

Multistablity is an important property of chaotic dynamical systems which is the coexistence of 
attractors for same parameter set but different initial conditions. In this work, it is also established that 

the new hyperchaotic system has multistability with coexisting attractors. 

Control and synchronization of chaotic and hyperchaotic systems are important research topics in 
the chaos literature [20-21].  As a control application, we use integral sliding mode control for active 

self-synchronization of the new hyperchaotic system. Sliding mode control has attractive properties 

such as finite-time convergence, robust to parameter variations, etc. [22-23]. 

In Section 2, we describe the modelling of the new hyperchaotic two-scroll system. In Section 3, 
we describe a dynamic analysis of the new hyperchaotic system. In Section 4, we detail active self-

synchronization design for the new hyperchaotic systems as master-slave systems via integral sliding 

mode control. In Section 5, we detail the circuit simulation of the new hyperchaotic system using 
Multisim. Finally, in Section 6, we conclude this work with a summary of main results.  

2.  A New Hyperchaotic Two-Scroll system with Three Nonlinearities 

In this research paper, we propose a novel 4-D hyperchaotic system modelled by the dynamics 

1 2 1 2 3 4

2

2 2 1 3 4

2

3 3 1 1 2

4 1 4

( )

4

x a x x bx x x

x cx x x x

x x px x x

x x dx

   


  


   
  

      (1) 

In (1), 1 2 3 4( , , , )X x x x x is the state and , , , ,a b c d p are constant parameters. We note that the 4-

D system (1) has three quadratic nonlinearities and a cubic nonlinearity in the dynamics.  

We shall show that the system (1) exhibits a hyperchaotic attractor for the parameter values 

35,  15,  20,  0.2,  0.1a b c d p          (2) 

For numerical simulations, we take the initial values of the system (1) as 

 1 2 3 4(0) 0.3,   (0) 0.3,   (0) 0.3,   (0) 0.3x x x x        (3) 

Using Wolf algorithm [24], we calculate the Lyapunov exponents for the system (1) for the 

parameter values (2) and the initial values (3) for 1 5T E  seconds as follows:  

1 2 3 43.5711,   0.2231,   0,   22.5347LE LE LE LE        (4) 

The 4-D system (1) is hyperchaotic since it possesses two positive Lyapunov exponents as 

indicated in Eq. (4). Also, the sum of the Lyapunov exponents of the system (1) is negative. This 
establishes that the system (1) is also dissipative. Thus, we conclude from the LE spectrum (4) that the 

system (1) is a dissipative hyperchaotic system. 

Figure 1 shows the Lyapunov exponents spectrum of the new 4-D system (1). 
Figure 2 depicts the two-dimensional phase plots of the new hyperchaotic system (1) for 

( , , , , ) (35,15,20,0.2,0.1)a b c d p   and (0) (0.3,0.3,0.3,0.3).X    

From Figure 2, it is clear that the new hyperchaotic system (1) displays a double-scroll strange 

attractor. 
 



 
 

 

 
 

 

 

Figure 1. Lyapunov exponents of the hyperchaotic two-scroll system (1) for the parameter set  

( , , , , ) (35,15,20,0.2,0.1)a b c d p  and initial state (0) (0.3,0.3,0.3,0.3)X   

 

 Figure 2. MATLAB 2-D plots of the new hyperchaotic two-scroll system (1) for   

( , , , , ) (35,15,20,0.2,0.1)a b c d p   and  (0) (0.3,0.3,0.3,0.3)X    



 
 

 

 
 

 

3.  Dynamic Analysis of the New Hyperchaotic Two-Scroll System 

3.1 Symmetry 

The 4-D hyperchaotic two-scroll system (1) stays invariant under the coordinates transformation 

  
1 2 3 4 1 2 3 4( , , , ) ( , , , )x x x x x x x x         (5) 

The invariance under the coordinates transformation (5) persists for all values of the parameters. 

Thus, we make the deduction that the system (1) has rotation symmetry about the  
3x  axis and that 

any non-trivial trajectory must have a twin trajectory. 

3.2 Rest Points 

The rest points of the hyperchaotic system (1) are obtained by solving the following equations; 

  2 1 2 3 4( ) 0a x x bx x x           (6a) 

  
2

2 1 3 4 0cx x x x          (6b) 

  
2

3 1 1 24 0x px x x           (6c) 

  1 4 0x dx          (6d) 

We take the parameter values as in the hyperchaotic case (2), viz. 

      35,  15,  20,  0.2,  0.1a b c d p           (7) 

Solving the equations (6) using the parameter values (7), we obtain three rest points: 

  
0 1 2

0 5.2435 5.2435

0 2.3111 2.3111
,    ,    

0 3.7169 3.7169

0 26.2173 26.2173

E E E

     
     


       
     
     

     

    (8) 

The Jacobian matrix of the novel hyperchaotic system (1) at any point 
4xR  is obtained as 

  

3 2

2

3 1 3

2 1 1

35 35 15 15 1

20 2 1
( )

0.2 4 0

1 0 0 0.2

x x

x x x
J x

x x x

  
 

  
 
  
 
 

    (9) 

 The eigenvalues of  0 0( )J J E are numerically obtained as 

   1 2 3 44,   35.0464,   0.2787,   19.9678            (10) 

This shows that 0E  is a saddle-point and hence it is unstable. 

The eigenvalues of  1 1( )J J E  are numerically obtained as 

   1 2 3,427.7514,   0.1832,   4.3841 30.4055 i          (11) 

This shows that 1E  is a saddle-focus and hence it is unstable. 

The eigenvalues of 2 2( )J J E  are the same as the eigenvalues of  1.J  This shows that  2E is a 

saddle-focus and hence it is unstable.  

Hence, all three rest points 0 1 2, ,E E E  are unstable. This shows that the hyperchaotic system (1) has 

a self-excited attractor [2]. 

3.3 Kaplan-Yorke Dimension 

In Section 2, we calculated the Lyapunov exponents of the new hyperchaotic system (1) for 

( , , , , ) (35,15,20,0.2,0.1)a b c d p    and (0) (0.3,0.3,0.3,0.3)X   as follows: 

 1 2 3 43.5711,   0.2231,   0,   22.5347LE LE LE LE        (12) 



 
 

 

 
 

 

Thus, we calculate the Kaplan-Yorke dimension of the 4-D hyperchaotic system (1) as follows: 

1 2 3

4

3 3.1684
| |

KY

LE LE LE
D

LE

 
        (13) 

The high value of  
KYD indicates the high complexity of the new hyperchaotic system (1). Thus, the 

new system can be applied in many engineering applications. 

3.4 Multistability   

Multi-stability is a special property of a chaotic or hyperchaotic system which means the existence of 

coexisting attractors for the same set of parameter values but different initial states. 
Figure 3 shows the multi-stability of the new hyperchaotic system (1) with two coexisting 

hyperchaotic attractors for ( , , , , ) (35,15,20,0.2,0.1)a b c d p  and the initial states 

0 (0.3,0.3,0.3,0.3)X   (blue trajectory) and 0 ( 0.6, 0.6,0.4,0.4)Y     (red trajectory). 

   
                                          (a)                                                                  (b)   

 

Figure 3.  Multi-stability of the new hyperchaotic two-scroll system (1) with coexisting attractors for  

( , , , , ) (35,15,20,0.2,0.1)a b c d p  and the initial states 0 (0.3,0.3,0.3,0.3)X   (blue trajectory) 

and  0 ( 0.6, 0.6,0.4,0.4)Y     (red trajectory)  

4.  Active Synchronization of the New Hyperchaotic Systems via Integral Sliding Mode Control 

 

In this section, we apply integral sliding mode control to achieve complete synchronization of the new 
hyperchaotic systems taken as master and slave systems via integral sliding mode control.  

The main control result of this section is established using Lyapunov stability theory [25]. 

As the master system, we consider the new hyperchaotic system given by 

 

1 2 1 2 3 4

2

2 2 1 3 4

2

3 3 1 1 2

4 1 4

( )

4

x a x x bx x x

x cx x x x

x x px x x

x x dx

   


  


   
  

       (14) 

In (14), 1 2 3 4( , , , )X x x x x is the state and , , ,a b c d are positive parameters. 

  



 
 

 

 
 

 

As the slave system, we take the new hyperchaotic system given by 

  

1 2 1 2 3 4 1

2

2 2 1 3 4 2

2

3 3 1 1 2 3

4 1 4 4

( )

4

y a y y by y y u

y cy y y y u

y y py y y u

y y dy u

    


   


    
   

      (15) 

In (15), 1 2 3 4( , , , )Y y y y y is the state and 1 2 3 4, , ,u u u u are sliding mode controls. 

We use integral sliding mode control to achieve global hyperchaos synchronization between (14) 
and (15) for all values of the initial states of the two systems and all values of the system parameters. 

We define the complete synchronization error as 

 

1 1 1

2 2 2

3 3 3

4 4 4

e y x

e y x

e y x

e y x

 


 


 
  

        (16) 

The error dynamics is calculated as follows: 

   

1 2 1 4 2 3 2 3 1

2 2

2 2 4 1 3 1 3 2

2 2

3 3 1 1 1 2 1 2 3

4 1 4 4

( ) ( )

4 ( )

e a e e e b y y x x u

e ce e y y x x u

e e p y x y y x x u

e e de u

     


    


      
   

     (17) 

For each error variable, the integral sliding manifold is defined as follows: 

 

1 1 1 1

0

2 2 2 2

0

3 3 3 3

0

4 4 4 4

0

( )

( )

( )

( )

t

t

t

t

s e e d

s e e d

s e e d

s e e d

  

  

  

  


 



  


  




 










       (18) 

From (18), we deduce that 

 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

s e e

s e e

s e e

s e e









 


 


 
  

        (19) 

The Hurwitz condition will be satisfied if we assume that 0i  for 1,2,3,4.i   

  



 
 

 

 
 

 

Based on the exponential reaching law, we set 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

sgn( )

sgn( )

sgn( )

sgn( )

s s k s

s s k s

s s k s

s s k s









  


  


  
   

       (20) 

Comparing the equations (19) and (20), we obtain 

  

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4

sgn( )

sgn( )

sgn( )

sgn( )

e e s k s

e e s k s

e e s k s

e e s k s

 

 

 

 

   


   


   
    

      (21) 

The equation (21) can be expanded using (17) as follows: 

2 1 4 2 3 2 3 1 1 1 1 1 1 1

2 2

2 4 1 3 1 3 2 2 2 2 2 2 2

2 2

3 1 1 1 2 1 2 3 3 3 3 3 3 3

1 4 4 4 4 4 4 4 4

( ) ( ) sgn( )

sgn( )

4 ( ) sgn( )

sgn( )

a e e e b y y x x u e s k s

ce e y y x x u e s k s

e p y x y y x x u e s k s

e de u e s k s

 

 

 

 

        


       

         
      

  (22) 

From Eq. (22), we obtain the required sliding mode control law as follows: 

1 2 1 4 2 3 2 3 1 1 1 1 1 1

2 2

2 2 4 1 3 1 3 2 2 2 2 2 2

2 2

3 3 1 1 1 2 1 2 3 3 3 3 3 3

4 1 4 4 4 4 4 4 4

( ) ( ) sgn( )

sgn( )

4 ( ) sgn( )

sgn( )

u a e e e b y y x x e s k s

u ce e y y x x e s k s

u e p y x y y x x e s k s

u e de e s k s

 

 

 

 
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

       


       
      

   (23) 

Theorem 1. The new hyperchaotic two-scroll systems (14) and (15) are globally and asymptotically 
synchronized for all initial conditions by the integral sliding mode controller (23), where the constants 

, , ,i i ik   ( 1,2,3,4)i  are all positive. 

Proof. We establish this theorem using Lyapunov stability theory [25]. 

First, we consider the quadratic Lyapunov function given by 

  2 2 2 2

1 2 3 4 1 2 3 4

1
( , , , )

2
V s s s s s s s s         (24) 

Clearly, V is positive definite at all points of 
4.R  The time-derivative of V is obtained as 

  
4 4

2

1 1

sgn( ) | |i i i i i i i i i

i i

V s s k s s k s 
 

             (25) 

From (25), we see that V is negative definite at all points of 
4.R  

Using Lyapunov stability theory, we conclude that ( ) 0is t  as t  for each 1,2,3,4.i   

Hence, it follows that ( ) 0ie t   as t  for each 1,2,3,4.i   This completes the proof.     

For numerical simulations, we take the system parameters as in hyperchaotic case (2), viz. 

( , , , , ) (35,15,20,0.2,0.1).a b c d p    We take the sliding constants as 0.1i i   and 20ik  for 

each 1,2,3,4.i   We take the initial state of the hyperchaotic system (14) as 

(0) (3.2,5.7,12.3,3.9).X   We take the initial state of the hyperchaotic system (15) as

(0) (7.3,2.5,1.8,11.3).Y   Figures 4 and 5 show the complete synchronization between the 

hyperchaotic systems (14) and (15). 



 
 

 

 
 

 

 
Figure 4.  Complete synchronization of the hyperchaotic systems (14) and (15) 

 

 
Figure 5.  Time-plot of the synchronization errors between the hyperchaotic systems (14) and (15) 

  



 
 

 

 
 

 

5.  Circuit Simulation of the New Hyperchaotic System 

 

This study will consider the analog circuit implementation of the new hyperchaotic two-scroll system 
described in (1). Figure 6 shows a four channels electronic circuit scheme with variables x1, x2, x3, x4 

from the system (1). The dynamics of the new hyperchaotic two-scroll system is described as follows: 
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      (26) 

 

Here, x1, x2, x3, x4 are the voltages across the capacitors C1, C2, C3 and C4, respectively. We choose the 

values of the circuital elements as R1 = R2 = 11.42 kΩ, R3 = 2.67 kΩ, R5 = 20 kΩ, R6 = 4 kΩ, R10 = 40 
kΩ, R12 = 2 MΩ, R4 = R7 = R9 = R11 = 400 kΩ, R8 = R13 = R14  = R15  = R16  = R17  = R18  = 100 kΩ, C1 = 

C2 = C3 = C4 = 3.2 nF. The corresponding phase portraits on the oscilloscope are shown in Figure 7. 

The agreement between the Multisim results (Figure 7) and the MATLAB plots (Figure 2). 
 

6.  Conclusions 

In this work, we described a new four-dimensional hyperchaotic two-scroll system with four 
nonlinearities (three quadratic nonlinearities and a cubic nonlinearity). We detailed the qualitative and 

dynamical properties of the new hyperchaotic two-scroll system in terms of phase portraits, Lyapunov 

exponents, Kaplan-Yorke dimension, symmetry, dissipativity, rest points, etc. We also established that 
the new hyperchaotic two-scroll system has multistability with coexisting attractors. As a control 

application, we applied integral sliding mode control to achieve active self-synchronization of the new 

hyperchaotic system. As an engineering application, an electronic circuit realization of the new 
hyperchaotic two-scroll system was developed in Multisim and confirmed the feasibility of the system. 

The circuit design in Multisim of the new hyperchaotic two-scroll system enable numerous 

applications of the new hyperchaotic two-scroll system in areas such as encryption and secure 
communication. 

 

 



 
 

 

 
 

 

 
 

 
Figure 6. Circuit design for the new hyperchaotic two-scroll system 
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Figure 7. MultiSIM chaotic attractors of the new hyperchaotic two-scroll system 

 (a) x1 – x2 plane, (b) x2 – x3 plane, (c) x3  - x4 plane and (d) x1 – x4 plane. 
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Abstract. A new 4-D hyperchaotic two-scroll system with three quadratic nonlinearities and a 

cubic nonlinearity is proposed in this paper. The dynamical properties of the new hyperchaotic 
system are described in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke 

dimension, symmetry, dissipativity, etc. We also establish that the new hyperchaotic system 

has multistability with coexisting attractors. As a control application, we use integral sliding 

mode control for active self-synchronization of the new hyperchaotic systems as master-slave 

systems. As an engineering application, an electronic circuit design of the new hyperchaotic 

two-scroll system is developed in MultiSIM, which confirms the feasibility of the system.  

 

Keywords: Chaos, hyperchaos, hyperchaotic systems, sliding mode control, synchronization, 

etc. 

1.  Introduction 
Chaos theory deals with nonlinear dynamical systems exhibiting high sensitivity to small changes in 

initial conditions [1-2]. Mathematically, chaotic systems are characterized by the presence of at least 

one positive Lyapunov exponent. Chaotic systems have applications in several engineering areas such 
as chemical reactors [3-4], neuron systems [5-6], mechanical systems [7-8], circuits [9-11], oscillators 

[12-13], neural networks [14-15], etc.  

Hyperchaotic systems are defined as chaotic systems having two or more positive Lyapunov 

exponents. The trajectories of hyperchaotic systems can expand in two different directions 
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corresponding to the two positive Lyapunov exponents. Hyperchaotic systems have important 

engineering applications such as cryptosystems [16-17], secure communication systems [18-19], etc. 

In this work, we report a new 4-D hyperchaotic two-scroll system with three quadratic 
nonlinearities and a cubic nonlinearity. The dynamical properties of the new hyperchaotic system are 

described in terms of MATLAB phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, 

symmetry, dissipativity, etc. We show that the new hyperchaotic system has three unstable rest points. 
Thus, the new system has self-excited two-scroll attractor. 

Multistablity is an important property of chaotic dynamical systems which is the coexistence of 

attractors for same parameter set but different initial conditions. In this work, it is also established that 

the new hyperchaotic system has multistability with coexisting attractors. 
Control and synchronization of chaotic and hyperchaotic systems are important research topics in 

the chaos literature [20-21].  As a control application, we use integral sliding mode control for active 

self-synchronization of the new hyperchaotic system. Sliding mode control has attractive properties 
such as finite-time convergence, robust to parameter variations, etc. [22-23]. 

In Section 2, we describe the modelling of the new hyperchaotic two-scroll system. In Section 3, 

we describe a dynamic analysis of the new hyperchaotic system. In Section 4, we detail active self-
synchronization design for the new hyperchaotic systems as master-slave systems via integral sliding 

mode control. In Section 5, we detail the circuit simulation of the new hyperchaotic system using 

Multisim. Finally, in Section 6, we conclude this work with a summary of main results.  

2.  A New Hyperchaotic Two-Scroll system with Three Nonlinearities 
In this research paper, we propose a novel 4-D hyperchaotic system modelled by the dynamics 

1 2 1 2 3 4

2

2 2 1 3 4

2

3 3 1 1 2

4 1 4

( )

4

x a x x bx x x

x cx x x x

x x px x x

x x dx

   


  


   
  

      (1) 

In (1), 1 2 3 4( , , , )X x x x x is the state and , , , ,a b c d p are constant parameters. We note that the 4-

D system (1) has three quadratic nonlinearities and a cubic nonlinearity in the dynamics.  

We shall show that the system (1) exhibits a hyperchaotic attractor for the parameter values 

35,  15,  20,  0.2,  0.1a b c d p          (2) 

For numerical simulations, we take the initial values of the system (1) as 

 1 2 3 4(0) 0.3,   (0) 0.3,   (0) 0.3,   (0) 0.3x x x x        (3) 

Using Wolf algorithm [24], we calculate the Lyapunov exponents for the system (1) for the 

parameter values (2) and the initial values (3) for 1 5T E  seconds as follows:  

1 2 3 43.5711,   0.2231,   0,   22.5347LE LE LE LE        (4) 

The 4-D system (1) is hyperchaotic since it possesses two positive Lyapunov exponents as 
indicated in Eq. (4). Also, the sum of the Lyapunov exponents of the system (1) is negative. This 

establishes that the system (1) is also dissipative. Thus, we conclude from the LE spectrum (4) that the 

system (1) is a dissipative hyperchaotic system. 
Figure 1 shows the Lyapunov exponents spectrum of the new 4-D system (1). 

Figure 2 depicts the two-dimensional phase plots of the new hyperchaotic system (1) for 

( , , , , ) (35,15,20,0.2,0.1)a b c d p   and (0) (0.3,0.3,0.3,0.3).X    

From Figure 2, it is clear that the new hyperchaotic system (1) displays a double-scroll strange 
attractor. 

 



 
 

 

 
 

 

 

Figure 1. Lyapunov exponents of the hyperchaotic two-scroll system (1) for the parameter set  

( , , , , ) (35,15,20,0.2,0.1)a b c d p  and initial state (0) (0.3,0.3,0.3,0.3)X   

 

 Figure 2. MATLAB 2-D plots of the new hyperchaotic two-scroll system (1) for   

( , , , , ) (35,15,20,0.2,0.1)a b c d p   and  (0) (0.3,0.3,0.3,0.3)X    



 
 

 

 
 

 

3.  Dynamic Analysis of the New Hyperchaotic Two-Scroll System 

3.1 Symmetry 

The 4-D hyperchaotic two-scroll system (1) stays invariant under the coordinates transformation 

  
1 2 3 4 1 2 3 4( , , , ) ( , , , )x x x x x x x x         (5) 

The invariance under the coordinates transformation (5) persists for all values of the parameters. 

Thus, we make the deduction that the system (1) has rotation symmetry about the  
3x  axis and that 

any non-trivial trajectory must have a twin trajectory. 

3.2 Rest Points 

The rest points of the hyperchaotic system (1) are obtained by solving the following equations; 

  2 1 2 3 4( ) 0a x x bx x x           (6a) 

  
2

2 1 3 4 0cx x x x          (6b) 

  
2

3 1 1 24 0x px x x           (6c) 

  1 4 0x dx          (6d) 

We take the parameter values as in the hyperchaotic case (2), viz. 

      35,  15,  20,  0.2,  0.1a b c d p           (7) 

Solving the equations (6) using the parameter values (7), we obtain three rest points: 

  
0 1 2

0 5.2435 5.2435

0 2.3111 2.3111
,    ,    

0 3.7169 3.7169

0 26.2173 26.2173

E E E

     
     


       
     
     

     

    (8) 

The Jacobian matrix of the novel hyperchaotic system (1) at any point 
4xR  is obtained as 

  

3 2

2

3 1 3

2 1 1

35 35 15 15 1

20 2 1
( )

0.2 4 0

1 0 0 0.2

x x

x x x
J x

x x x
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 

  
 
  
 
 

    (9) 

 The eigenvalues of  0 0( )J J E are numerically obtained as 

   1 2 3 44,   35.0464,   0.2787,   19.9678            (10) 

This shows that 0E  is a saddle-point and hence it is unstable. 

The eigenvalues of  1 1( )J J E  are numerically obtained as 

   1 2 3,427.7514,   0.1832,   4.3841 30.4055 i          (11) 

This shows that 1E  is a saddle-focus and hence it is unstable. 

The eigenvalues of 2 2( )J J E  are the same as the eigenvalues of  1.J  This shows that  2E is a 

saddle-focus and hence it is unstable.  

Hence, all three rest points 0 1 2, ,E E E  are unstable. This shows that the hyperchaotic system (1) has 

a self-excited attractor [2]. 

3.3 Kaplan-Yorke Dimension 

In Section 2, we calculated the Lyapunov exponents of the new hyperchaotic system (1) for 

( , , , , ) (35,15,20,0.2,0.1)a b c d p    and (0) (0.3,0.3,0.3,0.3)X   as follows: 

 1 2 3 43.5711,   0.2231,   0,   22.5347LE LE LE LE        (12) 



 
 

 

 
 

 

Thus, we calculate the Kaplan-Yorke dimension of the 4-D hyperchaotic system (1) as follows: 

1 2 3

4

3 3.1684
| |

KY

LE LE LE
D

LE

 
        (13) 

The high value of  
KYD indicates the high complexity of the new hyperchaotic system (1). Thus, the 

new system can be applied in many engineering applications. 

3.4 Multistability   

Multi-stability is a special property of a chaotic or hyperchaotic system which means the existence of 

coexisting attractors for the same set of parameter values but different initial states. 
Figure 3 shows the multi-stability of the new hyperchaotic system (1) with two coexisting 

hyperchaotic attractors for ( , , , , ) (35,15,20,0.2,0.1)a b c d p  and the initial states 

0 (0.3,0.3,0.3,0.3)X   (blue trajectory) and 0 ( 0.6, 0.6,0.4,0.4)Y     (red trajectory). 

   
                                          (a)                                                                  (b)   

 

Figure 3.  Multi-stability of the new hyperchaotic two-scroll system (1) with coexisting attractors for  

( , , , , ) (35,15,20,0.2,0.1)a b c d p  and the initial states 0 (0.3,0.3,0.3,0.3)X   (blue trajectory) 

and  0 ( 0.6, 0.6,0.4,0.4)Y     (red trajectory)  

4.  Active Synchronization of the New Hyperchaotic Systems via Integral Sliding Mode Control 

 

In this section, we apply integral sliding mode control to achieve complete synchronization of the new 
hyperchaotic systems taken as master and slave systems via integral sliding mode control.  

The main control result of this section is established using Lyapunov stability theory [25]. 

As the master system, we consider the new hyperchaotic system given by 
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       (14) 

In (14), 1 2 3 4( , , , )X x x x x is the state and , , ,a b c d are positive parameters. 

  



 
 

 

 
 

 

As the slave system, we take the new hyperchaotic system given by 
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      (15) 

In (15), 1 2 3 4( , , , )Y y y y y is the state and 1 2 3 4, , ,u u u u are sliding mode controls. 

We use integral sliding mode control to achieve global hyperchaos synchronization between (14) 
and (15) for all values of the initial states of the two systems and all values of the system parameters. 

We define the complete synchronization error as 

 

1 1 1
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        (16) 

The error dynamics is calculated as follows: 
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     (17) 

For each error variable, the integral sliding manifold is defined as follows: 
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       (18) 

From (18), we deduce that 

 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

s e e

s e e

s e e

s e e









 


 


 
  

        (19) 

The Hurwitz condition will be satisfied if we assume that 0i  for 1,2,3,4.i   

  



 
 

 

 
 

 

Based on the exponential reaching law, we set 
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       (20) 

Comparing the equations (19) and (20), we obtain 

  

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4

sgn( )

sgn( )

sgn( )

sgn( )

e e s k s

e e s k s

e e s k s

e e s k s

 

 

 

 

   


   


   
    

      (21) 

The equation (21) can be expanded using (17) as follows: 

2 1 4 2 3 2 3 1 1 1 1 1 1 1

2 2

2 4 1 3 1 3 2 2 2 2 2 2 2

2 2

3 1 1 1 2 1 2 3 3 3 3 3 3 3

1 4 4 4 4 4 4 4 4

( ) ( ) sgn( )

sgn( )

4 ( ) sgn( )

sgn( )

a e e e b y y x x u e s k s

ce e y y x x u e s k s

e p y x y y x x u e s k s

e de u e s k s

 

 

 

 

        


       

         
      

  (22) 

From Eq. (22), we obtain the required sliding mode control law as follows: 

1 2 1 4 2 3 2 3 1 1 1 1 1 1

2 2

2 2 4 1 3 1 3 2 2 2 2 2 2

2 2

3 3 1 1 1 2 1 2 3 3 3 3 3 3

4 1 4 4 4 4 4 4 4

( ) ( ) sgn( )

sgn( )

4 ( ) sgn( )

sgn( )

u a e e e b y y x x e s k s

u ce e y y x x e s k s

u e p y x y y x x e s k s

u e de e s k s

 

 

 

 

        


       


       
      

   (23) 

Theorem 1. The new hyperchaotic two-scroll systems (14) and (15) are globally and asymptotically 
synchronized for all initial conditions by the integral sliding mode controller (23), where the constants 

, , ,i i ik   ( 1,2,3,4)i  are all positive. 

Proof. We establish this theorem using Lyapunov stability theory [25]. 

First, we consider the quadratic Lyapunov function given by 

  2 2 2 2

1 2 3 4 1 2 3 4

1
( , , , )

2
V s s s s s s s s         (24) 

Clearly, V is positive definite at all points of 
4.R  The time-derivative of V is obtained as 

  
4 4

2

1 1

sgn( ) | |i i i i i i i i i

i i

V s s k s s k s 
 

             (25) 

From (25), we see that V is negative definite at all points of 
4.R  

Using Lyapunov stability theory, we conclude that ( ) 0is t  as t  for each 1,2,3,4.i   

Hence, it follows that ( ) 0ie t   as t  for each 1,2,3,4.i   This completes the proof.     

For numerical simulations, we take the system parameters as in hyperchaotic case (2), viz. 

( , , , , ) (35,15,20,0.2,0.1).a b c d p    We take the sliding constants as 0.1i i   and 20ik  for 

each 1,2,3,4.i   We take the initial state of the hyperchaotic system (14) as 

(0) (3.2,5.7,12.3,3.9).X   We take the initial state of the hyperchaotic system (15) as

(0) (7.3,2.5,1.8,11.3).Y   Figures 4 and 5 show the complete synchronization between the 

hyperchaotic systems (14) and (15). 



 
 

 

 
 

 

 
Figure 4.  Complete synchronization of the hyperchaotic systems (14) and (15) 

 

 
Figure 5.  Time-plot of the synchronization errors between the hyperchaotic systems (14) and (15) 

  



 
 

 

 
 

 

5.  Circuit Simulation of the New Hyperchaotic System 

 

This study will consider the analog circuit implementation of the new hyperchaotic two-scroll system 
described in (1). Figure 6 shows a four channels electronic circuit scheme with variables x1, x2, x3, x4 

from the system (1). The dynamics of the new hyperchaotic two-scroll system is described as follows: 
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
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      (26) 

 

Here, x1, x2, x3, x4 are the voltages across the capacitors C1, C2, C3 and C4, respectively. We choose the 

values of the circuital elements as R1 = R2 = 11.42 kΩ, R3 = 2.67 kΩ, R5 = 20 kΩ, R6 = 4 kΩ, R10 = 40 
kΩ, R12 = 2 MΩ, R4 = R7 = R9 = R11 = 400 kΩ, R8 = R13 = R14  = R15  = R16  = R17  = R18  = 100 kΩ, C1 = 

C2 = C3 = C4 = 3.2 nF. The corresponding phase portraits on the oscilloscope are shown in Figure 7. 

The agreement between the Multisim results (Figure 7) and the MATLAB plots (Figure 2). 
 

6.  Conclusions 

In this work, we described a new four-dimensional hyperchaotic two-scroll system with four 
nonlinearities (three quadratic nonlinearities and a cubic nonlinearity). We detailed the qualitative and 

dynamical properties of the new hyperchaotic two-scroll system in terms of phase portraits, Lyapunov 

exponents, Kaplan-Yorke dimension, symmetry, dissipativity, rest points, etc. We also established that 
the new hyperchaotic two-scroll system has multistability with coexisting attractors. As a control 

application, we applied integral sliding mode control to achieve active self-synchronization of the new 

hyperchaotic system. As an engineering application, an electronic circuit realization of the new 
hyperchaotic two-scroll system was developed in Multisim and confirmed the feasibility of the system. 

The circuit design in Multisim of the new hyperchaotic two-scroll system enable numerous 

applications of the new hyperchaotic two-scroll system in areas such as encryption and secure 
communication. 

 

 



 
 

 

 
 

 

 
 

 
Figure 6. Circuit design for the new hyperchaotic two-scroll system 
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Figure 7. MultiSIM chaotic attractors of the new hyperchaotic two-scroll system 

 (a) x1 – x2 plane, (b) x2 – x3 plane, (c) x3  - x4 plane and (d) x1 – x4 plane. 
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Abstract. A new 4-D hyperchaotic two-scroll system with three quadratic nonlinearities and a 

cubic nonlinearity is proposed in this paper. The dynamical properties of the new hyperchaotic 

system are described in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke 

dimension, symmetry, dissipativity, etc. We also establish that the new hyperchaotic system 

has multistability with coexisting attractors. As a control application, we use integral sliding 

mode control for active self-synchronization of the new hyperchaotic systems as master-slave 

systems. As an engineering application, an electronic circuit design of the new hyperchaotic 

two-scroll system is developed in MultiSIM, which confirms the feasibility of the system.  

 

Keywords: Chaos, hyperchaos, hyperchaotic systems, sliding mode control, synchronization, 

etc. 

1.  Introduction 

Chaos theory deals with nonlinear dynamical systems exhibiting high sensitivity to small changes in 

initial conditions [1-2]. Mathematically, chaotic systems are characterized by the presence of at least 

one positive Lyapunov exponent. Chaotic systems have applications in several engineering areas such 

as chemical reactors [3-4], neuron systems [5-6], mechanical systems [7-8], circuits [9-11], oscillators 

[12-13], neural networks [14-15], etc.  

Hyperchaotic systems are defined as chaotic systems having two or more positive Lyapunov 

exponents. The trajectories of hyperchaotic systems can expand in two different directions 

corresponding to the two positive Lyapunov exponents. Hyperchaotic systems have important 

engineering applications such as cryptosystems [16-17], secure communication systems [18-19], etc. 

In this work, we report a new 4-D hyperchaotic two-scroll system with three quadratic 

nonlinearities and a cubic nonlinearity. The dynamical properties of the new hyperchaotic system are 

described in terms of MATLAB phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, 



PVJ_ISComSET 2020
Journal of Physics: Conference Series 1764 (2021) 012206

IOP Publishing
doi:10.1088/1742-6596/1764/1/012206

2

 

 

 

 

 

 

symmetry, dissipativity, etc. We show that the new hyperchaotic system has three unstable rest points. 

Thus, the new system has self-excited two-scroll attractor. 

Multistablity is an important property of chaotic dynamical systems which is the coexistence of 

attractors for same parameter set but different initial conditions. In this work, it is also established that 

the new hyperchaotic system has multistability with coexisting attractors. 

Control and synchronization of chaotic and hyperchaotic systems are important research topics in 

the chaos literature [20-21].  As a control application, we use integral sliding mode control for active 

self-synchronization of the new hyperchaotic system. Sliding mode control has attractive properties 

such as finite-time convergence, robust to parameter variations, etc. [22-23]. 

In Section 2, we describe the modelling of the new hyperchaotic two-scroll system. In Section 3, 

we describe a dynamic analysis of the new hyperchaotic system. In Section 4, we detail active self-

synchronization design for the new hyperchaotic systems as master-slave systems via integral sliding 

mode control. In Section 5, we detail the circuit simulation of the new hyperchaotic system using 

Multisim. Finally, in Section 6, we conclude this work with a summary of main results.  

2.  A New Hyperchaotic Two-Scroll system with Three Nonlinearities 

In this research paper, we propose a novel 4-D hyperchaotic system modelled by the dynamics 

1 2 1 2 3 4

2

2 2 1 3 4

2

3 3 1 1 2

4 1 4

( )

4

x a x x bx x x

x cx x x x

x x px x x

x x dx

   


  


   
  

&

&

&

&

      (1) 

In (1), 1 2 3 4( , , , )X x x x x is the state and , , , ,a b c d p are constant parameters. We note that the 4-

D system (1) has three quadratic nonlinearities and a cubic nonlinearity in the dynamics.  

We shall show that the system (1) exhibits a hyperchaotic attractor for the parameter values 

35,  15,  20,  0.2,  0.1a b c d p          (2) 

For numerical simulations, we take the initial values of the system (1) as 

 1 2 3 4(0) 0.3,   (0) 0.3,   (0) 0.3,   (0) 0.3x x x x        (3) 

Using Wolf algorithm [24], we calculate the Lyapunov exponents for the system (1) for the 

parameter values (2) and the initial values (3) for 1 5T E  seconds as follows:  

1 2 3 43.5711,   0.2231,   0,   22.5347LE LE LE LE        (4) 

The 4-D system (1) is hyperchaotic since it possesses two positive Lyapunov exponents as 

indicated in Eq. (4). Also, the sum of the Lyapunov exponents of the system (1) is negative. This 

establishes that the system (1) is also dissipative. Thus, we conclude from the LE spectrum (4) that the 

system (1) is a dissipative hyperchaotic system. 

Figure 1 shows the Lyapunov exponents spectrum of the new 4-D system (1). 

Figure 2 depicts the two-dimensional phase plots of the new hyperchaotic system (1) for 

( , , , , ) (35,15, 20,0.2,0.1)a b c d p   and (0) (0.3,0.3,0.3,0.3).X    

From Figure 2, it is clear that the new hyperchaotic system (1) displays a double-scroll strange 

attractor. 
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Figure 1. Lyapunov exponents of the hyperchaotic two-scroll system (1) for the parameter set  

( , , , , ) (35,15, 20,0.2,0.1)a b c d p  and initial state (0) (0.3,0.3,0.3,0.3)X   

 

 Figure 2. MATLAB 2-D plots of the new hyperchaotic two-scroll system (1) for   

( , , , , ) (35,15, 20,0.2,0.1)a b c d p   and  (0) (0.3,0.3,0.3,0.3)X    
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3.  Dynamic Analysis of the New Hyperchaotic Two-Scroll System 

3.1 Symmetry 

The 4-D hyperchaotic two-scroll system (1) stays invariant under the coordinates transformation 

  1 2 3 4 1 2 3 4( , , , ) ( , , , )x x x x x x x x  a       (5) 

The invariance under the coordinates transformation (5) persists for all values of the parameters. 

Thus, we make the deduction that the system (1) has rotation symmetry about the  3x  axis and that 

any non-trivial trajectory must have a twin trajectory. 

3.2 Rest Points 

The rest points of the hyperchaotic system (1) are obtained by solving the following equations; 

  2 1 2 3 4( ) 0a x x bx x x           (6a) 

  
2

2 1 3 4 0cx x x x          (6b) 

  
2

3 1 1 24 0x px x x           (6c) 

  1 4 0x dx          (6d) 

We take the parameter values as in the hyperchaotic case (2), viz. 

      35,  15,  20,  0.2,  0.1a b c d p           (7) 

Solving the equations (6) using the parameter values (7), we obtain three rest points: 

  0 1 2

0 5.2435 5.2435

0 2.3111 2.3111
,    ,    

0 3.7169 3.7169

0 26.2173 26.2173

E E E

     
            
     
     

     

    (8) 

The Jacobian matrix of the novel hyperchaotic system (1) at any point 
4xR  is obtained as 

  

3 2

2

3 1 3

2 1 1

35 35 15 15 1

20 2 1
( )

0.2 4 0

1 0 0 0.2

x x

x x x
J x

x x x

  
    
  
 
 

    (9) 

 The eigenvalues of  0 0( )J J E are numerically obtained as 

   1 2 3 44,   35.0464,   0.2787,   19.9678            (10) 

This shows that 0E  is a saddle-point and hence it is unstable. 

The eigenvalues of  1 1( )J J E  are numerically obtained as 

   
1 2 3,427.7514,   0.1832,   4.3841 30.4055 i          (11) 

This shows that 1E  is a saddle-focus and hence it is unstable. 

The eigenvalues of 2 2( )J J E  are the same as the eigenvalues of  1.J  This shows that  2E is a 

saddle-focus and hence it is unstable.  

Hence, all three rest points 0 1 2, ,E E E  are unstable. This shows that the hyperchaotic system (1) has 

a self-excited attractor [2]. 

3.3 Kaplan-Yorke Dimension 

In Section 2, we calculated the Lyapunov exponents of the new hyperchaotic system (1) for 

( , , , , ) (35,15, 20,0.2,0.1)a b c d p    and (0) (0.3,0.3,0.3,0.3)X   as follows: 

 1 2 3 43.5711,   0.2231,   0,   22.5347LE LE LE LE        (12) 
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Thus, we calculate the Kaplan-Yorke dimension of the 4-D hyperchaotic system (1) as follows: 

1 2 3

4

3 3.1684
| |

KY

LE LE LE
D

LE

 
        (13) 

The high value of  KYD indicates the high complexity of the new hyperchaotic system (1). Thus, the 

new system can be applied in many engineering applications. 

3.4 Multistability   

Multi-stability is a special property of a chaotic or hyperchaotic system which means the existence of 

coexisting attractors for the same set of parameter values but different initial states. 

Figure 3 shows the multi-stability of the new hyperchaotic system (1) with two coexisting 

hyperchaotic attractors for ( , , , , ) (35,15, 20,0.2,0.1)a b c d p  and the initial states 

0 (0.3,0.3,0.3,0.3)X   (blue trajectory) and 0 ( 0.6, 0.6,0.4,0.4)Y     (red trajectory). 

   
                                          (a)                                                                  (b)   

 

Figure 3.  Multi-stability of the new hyperchaotic two-scroll system (1) with coexisting attractors for  

( , , , , ) (35,15, 20,0.2,0.1)a b c d p  and the initial states 0 (0.3,0.3,0.3,0.3)X   (blue trajectory) 

and  0 ( 0.6, 0.6,0.4,0.4)Y     (red trajectory)  

4.  Active Synchronization of the New Hyperchaotic Systems via Integral Sliding Mode Control 

 

In this section, we apply integral sliding mode control to achieve complete synchronization of the new 

hyperchaotic systems taken as master and slave systems via integral sliding mode control.  

The main control result of this section is established using Lyapunov stability theory [25]. 

As the master system, we consider the new hyperchaotic system given by 

 

1 2 1 2 3 4

2

2 2 1 3 4

2

3 3 1 1 2

4 1 4

( )

4

x a x x bx x x

x cx x x x

x x px x x

x x dx

   


  


   
  

&

&

&

&

       (14) 

In (14), 1 2 3 4( , , , )X x x x x is the state and , , ,a b c d are positive parameters. 
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As the slave system, we take the new hyperchaotic system given by 

  

1 2 1 2 3 4 1

2

2 2 1 3 4 2

2

3 3 1 1 2 3

4 1 4 4

( )

4

y a y y by y y u

y cy y y y u

y y py y y u

y y dy u

    


   


    
   

&

&

&

&

      (15) 

In (15), 1 2 3 4( , , , )Y y y y y is the state and 1 2 3 4, , ,u u u u are sliding mode controls. 

We use integral sliding mode control to achieve global hyperchaos synchronization between (14) 

and (15) for all values of the initial states of the two systems and all values of the system parameters. 

We define the complete synchronization error as 

 

1 1 1

2 2 2

3 3 3

4 4 4

e y x

e y x

e y x

e y x

 
  


 
  

        (16) 

The error dynamics is calculated as follows: 

   

1 2 1 4 2 3 2 3 1

2 2

2 2 4 1 3 1 3 2

2 2

3 3 1 1 1 2 1 2 3

4 1 4 4

( ) ( )

4 ( )

e a e e e b y y x x u

e ce e y y x x u

e e p y x y y x x u

e e de u

     


    


      
   

&

&

&

&

     (17) 

For each error variable, the integral sliding manifold is defined as follows: 

 

1 1 1 1

0

2 2 2 2

0

3 3 3 3

0

4 4 4 4

0

( )

( )

( )

( )

t

t

t

t

s e e d

s e e d

s e e d

s e e d

  

  

  

  


 



  


  



 










       (18) 

From (18), we deduce that 

 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

s e e

s e e

s e e

s e e









 
  


 
  

& &

& &

& &

& &

        (19) 

The Hurwitz condition will be satisfied if we assume that 0i  for 1, 2,3, 4.i   
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Based on the exponential reaching law, we set 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

sgn( )

sgn( )

sgn( )

sgn( )

s s k s

s s k s

s s k s

s s k s









  
   


  
   

&

&

&

&

       (20) 

Comparing the equations (19) and (20), we obtain 

  

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4

sgn( )

sgn( )

sgn( )

sgn( )

e e s k s

e e s k s

e e s k s

e e s k s

 

 

 

 

   
    


   
    

&

&

&

&

      (21) 

The equation (21) can be expanded using (17) as follows: 

2 1 4 2 3 2 3 1 1 1 1 1 1 1

2 2

2 4 1 3 1 3 2 2 2 2 2 2 2

2 2

3 1 1 1 2 1 2 3 3 3 3 3 3 3

1 4 4 4 4 4 4 4 4

( ) ( ) sgn( )

sgn( )

4 ( ) sgn( )

sgn( )

a e e e b y y x x u e s k s

ce e y y x x u e s k s

e p y x y y x x u e s k s

e de u e s k s

 

 

 

 

        


       

         
      

  (22) 

From Eq. (22), we obtain the required sliding mode control law as follows: 

1 2 1 4 2 3 2 3 1 1 1 1 1 1

2 2

2 2 4 1 3 1 3 2 2 2 2 2 2

2 2

3 3 1 1 1 2 1 2 3 3 3 3 3 3

4 1 4 4 4 4 4 4 4

( ) ( ) sgn( )

sgn( )

4 ( ) sgn( )

sgn( )

u a e e e b y y x x e s k s

u ce e y y x x e s k s

u e p y x y y x x e s k s

u e de e s k s

 

 

 

 

        


       


       
      

   (23) 

Theorem 1. The new hyperchaotic two-scroll systems (14) and (15) are globally and asymptotically 

synchronized for all initial conditions by the integral sliding mode controller (23), where the constants 

, , ,i i ik   ( 1, 2,3, 4)i  are all positive. 

Proof. We establish this theorem using Lyapunov stability theory [25]. 

First, we consider the quadratic Lyapunov function given by 

  2 2 2 2

1 2 3 4 1 2 3 4

1
( , , , )

2
V s s s s s s s s         (24) 

Clearly, V is positive definite at all points of 
4 .R  The time-derivative of V is obtained as 

  
4 4

2

1 1

sgn( ) | |i i i i i i i i i

i i

V s s k s s k s 
 

        &     (25) 

From (25), we see that V& is negative definite at all points of 
4 .R  

Using Lyapunov stability theory, we conclude that ( ) 0is t  as t  for each 1, 2,3, 4.i   

Hence, it follows that ( ) 0ie t   as t  for each 1, 2,3, 4.i   This completes the proof.    � 

For numerical simulations, we take the system parameters as in hyperchaotic case (2), viz. 

( , , , , ) (35,15, 20,0.2,0.1).a b c d p    We take the sliding constants as 0.1i i   and 20ik  for 

each 1, 2,3, 4.i   We take the initial state of the hyperchaotic system (14) as 

(0) (3.2,5.7,12.3,3.9).X   We take the initial state of the hyperchaotic system (15) as

(0) (7.3, 2.5,1.8,11.3).Y   Figures 4 and 5 show the complete synchronization between the 

hyperchaotic systems (14) and (15). 
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Figure 4.  Complete synchronization of the hyperchaotic systems (14) and (15) 

 

 
Figure 5.  Time-plot of the synchronization errors between the hyperchaotic systems (14) and (15) 
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5.  Circuit Simulation of the New Hyperchaotic System 

 

This study will consider the analog circuit implementation of the new hyperchaotic two-scroll system 

described in (1). Figure 6 shows a four channels electronic circuit scheme with variables x1, x2, x3, x4 

from the system (1). The dynamics of the new hyperchaotic two-scroll system is described as follows: 

 


























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114
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21

103

2

1

93

3
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3

4

72

2

31

62

2

52
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4

41

32

31

1

21

2

11

1

11

10

1

10

11

1

100

11

1

10

111

x
RC

x
RC

x

xx
RC

x
RC

x
RC

x

x
RC

xx
RC

x
RC

x

x
RC

xx
RC

x
RC

x
RC

x

&

&

&

&

      (26) 

 

Here, x1, x2, x3, x4 are the voltages across the capacitors C1, C2, C3 and C4, respectively. We choose the 

values of the circuital elements as R1 = R2 = 11.42 kΩ, R3 = 2.67 kΩ, R5 = 20 kΩ, R6 = 4 kΩ, R10 = 40 

kΩ, R12 = 2 MΩ, R4 = R7 = R9 = R11 = 400 kΩ, R8 = R13 = R14  = R15  = R16  = R17  = R18  = 100 kΩ, C1 = 

C2 = C3 = C4 = 3.2 nF. The corresponding phase portraits on the oscilloscope are shown in Figure 7. 

The agreement between the Multisim results (Figure 7) and the MATLAB plots (Figure 2). 

 

6.  Conclusions 

In this work, we described a new four-dimensional hyperchaotic two-scroll system with four 

nonlinearities (three quadratic nonlinearities and a cubic nonlinearity). We detailed the qualitative and 

dynamical properties of the new hyperchaotic two-scroll system in terms of phase portraits, Lyapunov 

exponents, Kaplan-Yorke dimension, symmetry, dissipativity, rest points, etc. We also established that 

the new hyperchaotic two-scroll system has multistability with coexisting attractors. As a control 

application, we applied integral sliding mode control to achieve active self-synchronization of the new 

hyperchaotic system. As an engineering application, an electronic circuit realization of the new 

hyperchaotic two-scroll system was developed in Multisim and confirmed the feasibility of the system. 

The circuit design in Multisim of the new hyperchaotic two-scroll system enable numerous 

applications of the new hyperchaotic two-scroll system in areas such as encryption and secure 

communication. 
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Figure 6. Circuit design for the new hyperchaotic two-scroll system 

 

 

 

 



PVJ_ISComSET 2020
Journal of Physics: Conference Series 1764 (2021) 012206

IOP Publishing
doi:10.1088/1742-6596/1764/1/012206

11

 

 

 

 

 

 

 
 

  
(a) (b) 

 

  
(c) (d) 

 

Figure 7. MultiSIM chaotic attractors of the new hyperchaotic two-scroll system 

 (a) x1 – x2 plane, (b) x2 – x3 plane, (c) x3  - x4 plane and (d) x1 – x4 plane. 
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