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Abstract. In this paper, a new 4-D hyperchaotic system with one equilibrium point is first introduced. It contains 

ten terms with three quadratic nonlinearities. Of particular interest is that this novel system can generate periodic 

attractor, quasi-periodic attractor, four-scroll chaotic attractor and four-scroll hyperchaotic attractor with the 

variation of one of its parameters. Major dynamical properties of the new system are investigated such as 

sensitivity to the initial conditions, dissipativity, equilibrium point stability, Kaplan-Yorke dimension, Lyapunov 

exponents spectrum and bifurcation diagram. In addition, an equivalent electronic circuit schematic is 

implemented using Multisim software; the obtained results confirm the feasibility of the proposed system. 

 
Keywords: Chaos, hyperchaos, chaotic system, four-scroll attractor, Lyapunov exponent, bifurcation, electronic 

circuits 

1.  Introduction 

 

In the past 60 years, research on chaotic systems has a great intention from scientific communities, 
especially after the famous work of the American meteorologist Edward Lorenz in 1963 [1]. He 

identified the main property of the chaotic systems, which is the high sensitivity to the initial 

conditions.   A little variation in the initial values of the chaotic system lead to a very different and 
unpredictable behaviours. The high complex behaviour of this kind of systems make them very useful 

in many field of sciences such as secure communication [2-5].  

The main tool to characterize a chaotic behaviour of a dynamical system is the Lyapunov 

exponents. More clearly, a Lyapunov exponent is calculated by considering two adjacent initial values 
of a dynamical system. If this system exhibit a chaotic behaviour, the trajectories generating from 

those initial values will diverge exponentially, the parameter that characterize the rate of that 

divergence is a Lyapunov exponent. In fact, for each of the state-space dimensions there is a 
corresponding Lyapunov exponent. For a dynamical system that exhibit a chaotic behaviour, at the 

minimum one of the exponents is positive. If there is more than one positive exponents the dynamics 



 
 

 

 

 
 

of the corresponding system expand in more than one direction, which means that it exhibit a more 

complex behaviour and we called it in this case: hyperchaotic system. 

One of the most important uses of the chaotic systems is to secure transmissions using different 
methods and schemes. The complex signals with random appearance that is generated by the chaotic 

systems are used to hide the secret information to be transmitted. For that reason, many of chaotic 

systems is introduced in literature [6-10] to meet with the high demand for this kind of complex 
systems in the fields of secure communication with chaotic encryption. Furthermore, as we said 

before, the researchers found that compared with the usual low dimensional chaotic systems; the high 

dimensional (n>3) hyperchaotic systems with more than one positive Lyapunov exponent can generate 

more complex and random signals with more unpredictability, which enhance the security of the 
chaotic transmissions. For these reasons, many of 4D hyperchaotic systems with two positive 

Lyapunov exponents have been constructed [11-15] after the first one of Rossler in 1979 [16].  

This work proposes a new 4-D hyperchaotic system with very high degree of disorder. It can 
exhibit four-scroll hyperchaotic attractor; four scroll chaotic attractor, quasi-periodic and periodic 

orbits, which make it very complex and very useful for applications that is need complexity.   

2.  The New 4-D Hyperchaotic System 
2.1 Algebraic Structure of The New System 

 

The new system (1) has four parameters, and comprises three nonlinear terms. It is described by the 

following 4-D autonomous differential equations: 
 

 1x ax y z

y x ay bxz

z cz bxy w

w dz

    


  


  
  

                                                    (1) 

 

Where x, y, z and w are the state variables and a, b and c are the positive constant parameters, d is 

the control parameter that belongs to [0, 1]. When the parameters values are chosen as: 

4, 0.5, 0.6, 0.1a b c d          (2) 

System (1) generates a four-scroll hyperchaotic attractor. In Figure 1, we generate the x-y, x-z, y-z 

and x-y-z attractors of system (1) using the MATLAB ode45 function and starting from the initial 
point: 

   0 0 0 0, , , 1, 1, 1, 1x y z w                                                               (3) 

 

2.2 Sensitivity to Initial Conditions 

 

As we know, the main property of the chaotic systems is that of the sensitivity to the initial values. 

The high sensitivity to the initial conditions implies the existence of chaos. Figure 2 shows the 

different hyperchaotic behaviours exhibited by system (1) for two very near initial values  5( 10 )   that 

is due to the high sensitivity of the new hyperchaotic system (1) to the initial conditions. 
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Figure 1 Phase portraits of the four-scroll hyperchaotic attractor generated from system (1). (a) x-y 

attractor, (b) x-z attractor, (c) y-z attractor, (d) x-y-z attractor. 

 

 
 

Figure 2 Time series of the z variable for 0 01 (blue) and 1.00001 (red)z z   

2.3 Lyapunov Exponents and Kaplan-Yorke Dimension 



 
 

 

 

 
 

 

The two most important tools to characterize a chaotic behaviour of a system are the Lyapunov 

exponents and the Kaplan-Yorke dimension. The Lyapunov exponents of the proposed model (1) are 
shown in Figure 3 as: 

1 2 3 40.136, 0.068, 0.000, 7.603LE LE LE LE               (4) 

As shown in Figure 3, there are two positive Lyapunov exponents. Hence, the proposed 4-D system 
(1) is hyperchaotic. 

Then, the corresponding Kaplan-Yorke dimension is:  
1

1 1 11

1 2 3

4

1
where 0 and 0

3

0.204
3 3.026

7.603

j j j

KY j i i

j i ij

KY
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D j L L L
L

LE LE LE
D

LE

D



  

   

 
 

  


  

                           (5)                                

Since the Kaplan-Yorke dimension is fractal. So, the new model generates a complex hyperchaotic 
behaviour.   

 

 
Figure 3 Lyapunov exponents of the new system (1) for the  

parameters values (2) and the initial conditions (3) 
 

3.  Dynamical Analysis of the New Hyperchaotic System 

3.1 Dissipativity  

The divergence of the system (1) is calculated using the following equation:  

7.4
x y z w

V a a c
x y z w

   
          

   
     (6) 

Hence, 
7.4( ) (0) tdV t V e                                                                               (7) 

So the new system (1) is dissipative and its volume shrinks to zero at t →∞ with an exponential 
rate of (-7.4). Therefore, all system (1) orbits are ultimately confined to a specific subset of zero 

volume, and the asymptotic motion settles onto an attractor. 



 
 

 

 

 
 

3.2 Equilibrium Points and Stability  

In order to find the equilibrium points of the new 4-D hyperchaotic system (1) we should solving the 

following algebraic equations: 

(1 ) 0

0

0

0

ax y z

x ay bxz

cz bxy w

dz

   


  


  
 

        (8) 

We take the parameters values as in (2), it is easy to check that the system of equations (8) has one 

equilibrium point: 

 0, 0, 0, 0S                                                     (9) 

The stability of the equilibrium point S is discussed by linearizing system (1) at S using the 

following Jacobian matrix: 

, , ,

1 0

1 0

1

0 0 0

x y z w

a z y

bz a bx
J

by bx c

d

  
 
 

 
  
 

 

       (10) 

For the equilibrium point S (9), the Jacobian matrix become as follows: 

1 0 0

1 0 0

0 0 1

0 0 0

S

a

a
J

c

d

 
 


 
 
 

 

       (11) 

The corresponding characteristic equation is the following: 

0sJ                                                                 (12) 

In order to find the eigenvalues of the Jacobian matrix (11), the parameters values as in (2) is 

considered. We are solving the corresponding characteristic equation (12) and the following 

characteristic polynomial of SJ  is obtained:  
4 3 27.4 10.3 8.2 1.5            (13) 

Then, the characteristic polynomial has the following roots: 

1 2 3, 45, 3, 0.3 0.1i               (14) 

From (14) we note that exist two roots with positive real part, this shows that the equilibrium point 

S is unstable which implies chaos in the dissipative systems. 

 

3.3 Lyapunov Exponents Spectrum and Bifurcation Analysis 
 

Lyapunov exponents spectrum and bifurcation diagram represent the two most important tools to 
analyse the dynamical behaviour of the system. As it is known, the Lyapunov exponent is a measure 

of exponential rates of convergence and divergence for an uncertainty on the trajectories initial points. 

When it is positive the uncertainty increases, which means divergence of trajectories. So, the 

complexity of the dynamical behaviour increases with the increases in the number of positive 
Lyapunov exponents. 

 

In this subsection, dynamical properties of the new 4-D system (1) are discussed with the control 
parameter d varying. 

 

Fix a=4, b=0.5, c=0.c, and vary d 



 
 

 

 

 
 

 

When the parameters a, b and c are fixed, while parameter  0, 1d   is varied, The bifurcation 

diagram and the Lyapunov exponents spectrum of system (1) are depicted in Figure 4 and Figure 5 
respectively. We can see that the bifurcation diagram and the spectrum of the Lyapunov exponents are 

completely compatible.  

 

 
Figure 4 Bifurcation diagram of  system (1)  first state versus parameter d 

 

                             
Figure 5 Lyapunov exponents of  the system (1) versus parameter d 

 

 
From Figure 4 and Figure 5, we note that the new system can exhibit different dynamical 

behaviours with the variation of the control parameter d. system (1) can exhibit periodic behaviour, 



 
 

 

 

 
 

quasi-periodic behaviour, chaotic behaviour with four-scroll attractor and hyperchaotic behaviour with 

four-scroll attractor.  

When    0.55, 1 and 0.65, 0.74d d  , the new 4-D system (1) exhibits a periodic behaviour with 

one zero and three negatives Lyapunov exponents as depicted in Figure 6. When  0.46, 0.55d  , 

system (1) involves into a quasi-periodic attractor as shown in Figure 7 with two zero and two 

negatives Lyapunov exponents. When    0.37, 0.45 and 0.65, 0.74d d  , the proposed system (1) 

generates a chaotic behaviour with one positive Lyapunov exponents and four-scroll attractor as 

depicted in Figure 8. When  0.1, 0.36d  , the new proposed system (1) generate a hyperchaotic 

signals with two positive Lyapunov exponents and four-scroll attractor as shown in Figure 9.  

In Table 1, Lyapunov exponents, Kaplan-Yorke dimension and dynamics of the new 4-D system for 

different values of d   are given.  

 

 

 
 

Figure 6 Phase portraits of the periodic orbits 
when d=0.9 

 

 
 

Figure 7 Phase portraits of the quasi-periodic 

orbits when d=0.5 

 

 
Table 1 Lyapunov exponents, Kaplan-Yorke dimensin and  

dynamics of  system (1) with  parameter d varying 

 

d  
1LE   2LE  3LE  4LE  KYD  Dynamics Figure 

0.9 0 -0.160 -1.010 -6.231 0 Periodic 6 
0.5 0 0 0 -7.401 0 Quasi-

periodic 

7 

0.45 0.029 0 0 -7.431 3.004 Chaos 8 
0.15 0.132 0.043 0 -7.573 3.023 Hyperchaos 9 

 

 

 
 



 
 

 

 

 
 

 

 
 
Figure 8 Phase portraits of the four-scroll chaotic 

attractor when d=0.45 

 

 

 
 

Figure 9 Phase portraits of the four-scroll 

hyperchaotic attractor when d=0.15 

 

4.  Electronic Circuit 

 

In this section, an electronic circuit is designed using Multisim software to prove the feasibility of the 

proposed hyperchaotic system (1). The electronic circuit schematic of the new system (1) is shown in 
Figure 10.  

By applying Kirchhoff’s laws to the circuit in Figure 10, the corresponding circuital equations of the 

4-D system (1) are given as follows: 
 

1 1 2 1 3 1

4 2 5 2 6 2

7 3 8 3 9 3

10 4

1 1 1

1 1 1

1 1 1

1

x x y yz
R C R C R C

y x y xz
R C R C R C

z z xy w
R C R C R C

w z
R C


   




  


   


  



      (15) 

 

The values of the electronic circuit elements are chosen as follows:  

 

1 5

2 3 4 9

6 8

7

10

18

11

1 2 3 4

100

400

800

666.67

4

100

1

j

j

R R k

R R R R k

R R k

R k

R M

R k

C C C C nF






  

     


  


 
  



 

    



    (16) 



 
 

 

 

 
 

Figure 11, Figure 12, Figure 13 and Figure 14 show respectively the periodic attractor, the quasi-

periodic attractor, the four-scroll chaotic attractor and the four-scroll hyperchaotic attractor of the new 

system (1) generated by the circuit in Figure 10 and obtained using Multisim software.  
We can see that Multisim results depicted in Figure 11, Figure 12, Figure 13 and Figure 14 are well 

consistent respectively with the Matlab simulation results shown in Figure 6, Figure 7, Figure 8 and 

Figure 9. Hence, the physical feasibility of the proposed system (1) is verified.  
 

 
 

Figure 10 The circuit schematic of the new hyperchaotic system (1) 
 

 
 
Figure 11 Multisim result of the x-z periodic orbit 

 

 

 

 
 

Figure 12 Multisim result of the x-z quasi-

periodic orbit 

 

 



 
 

 

 

 
 

 

 

 

 
 

Figure 13 Multisim result of the x-z  four-scroll 
chaotic attractor 

 

 

 

 
 

Figure 14 Multisim result of the x-z four-scroll 

hyperchaotic attractor 

5.  Conclusions 

In this work, a new four-dimensional hyperchaotic system with one equilibrium point and three 

quadratic nonlinearities is first constructed. This system has rich dynamical behaviours, it can exhibit 
hyperchaotic behaviour with four-scroll attractor, chaotic behaviour with four-scroll attractor, quasi-

periodic behaviour and periodic behaviour. Basic properties of the proposed model are studied by 

means of equilibrium points, phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, and 

bifurcation diagrams.  Then, the feasibility of the new hyperchaotic system is confirmed by designing 
its electronic circuit using Multisim software. We strongly believe that the very complex dynamical 

behaviour of this new 4-D four-scroll hyperchaotic system is desirable to use for many engineering 

applications in the near future. 
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Abstract. In this paper, a new 4-D hyperchaotic system with one equilibrium point is first 

introduced. It contains ten terms with three quadratic nonlinearities. Of particular interest is 
that this novel system can generate periodic attractor, quasi-periodic attractor, four-scroll 

chaotic attractor and four-scroll hyperchaotic attractor with the variation of one of its 

parameters. Major dynamical properties of the new system are investigated such as sensitivity 

to the initial conditions, dissipativity, equilibrium point stability, Kaplan-Yorke dimension, 

Lyapunov exponents spectrum and bifurcation diagram. In addition, an equivalent electronic 

circuit schematic is implemented using Multisim software; the obtained results confirm the 

feasibility of the proposed system. 
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1.  Introduction 

 
In the past 60 years, research on chaotic systems has a great intention from scientific communities, 

especially after the famous work of the American meteorologist Edward Lorenz in 1963 [1]. He 

identified the main property of the chaotic systems, which is the high sensitivity to the initial 

conditions.   A little variation in the initial values of the chaotic system lead to a very different and 
unpredictable behaviours. The high complex behaviour of this kind of systems make them very useful 

in many field of sciences such as secure communication [2-5].  

The main tool to characterize a chaotic behaviour of a dynamical system is the Lyapunov 
exponents. More clearly, a Lyapunov exponent is calculated by considering two adjacent initial values 

of a dynamical system. If this system exhibit a chaotic behaviour, the trajectories generating from 



 
 

 

 
 

 

those initial values will diverge exponentially, the parameter that characterize the rate of that 

divergence is a Lyapunov exponent. In fact, for each of the state-space dimensions there is a 

corresponding Lyapunov exponent. For a dynamical system that exhibit a chaotic behaviour, at the 
minimum one of the exponents is positive. If there is more than one positive exponents the dynamics 

of the corresponding system expand in more than one direction, which means that it exhibit a more 

complex behaviour and we called it in this case: hyperchaotic system. 
One of the most important uses of the chaotic systems is to secure transmissions using different 

methods and schemes. The complex signals with random appearance that is generated by the chaotic 

systems are used to hide the secret information to be transmitted. For that reason, many of chaotic 

systems is introduced in literature [6-10] to meet with the high demand for this kind of complex 
systems in the fields of secure communication with chaotic encryption. Furthermore, as we said 

before, the researchers found that compared with the usual low dimensional chaotic systems; the high 

dimensional (n>3) hyperchaotic systems with more than one positive Lyapunov exponent can generate 
more complex and random signals with more unpredictability, which enhance the security of the 

chaotic transmissions. For these reasons, many of 4D hyperchaotic systems with two positive 

Lyapunov exponents have been constructed [11-15] after the first one of Rossler in 1979 [16].  
This work proposes a new 4-D hyperchaotic system with very high degree of disorder. It can 

exhibit four-scroll hyperchaotic attractor; four scroll chaotic attractor, quasi-periodic and periodic 

orbits, which make it very complex and very useful for applications that is need complexity.   

2.  The New 4-D Hyperchaotic System 
2.1 Algebraic Structure of The New System 

 

The new system (1) has four parameters, and comprises three nonlinear terms. It is described by the 
following 4-D autonomous differential equations: 

 

 1x ax y z

y x ay bxz

z cz bxy w

w dz

    


  


  
  

                                                    (1) 

 

Where x, y, z and w are the state variables and a, b and c are the positive constant parameters, d is 

the control parameter that belongs to [0, 1]. When the parameters values are chosen as: 

4, 0.5, 0.6, 0.1a b c d          (2) 

System (1) generates a four-scroll hyperchaotic attractor. In Figure 1, we generate the x-y, x-z, y-z 

and x-y-z attractors of system (1) using the MATLAB ode45 function and starting from the initial 
point: 

   0 0 0 0, , , 1, 1, 1, 1x y z w                                                               (3) 

 

2.2 Sensitivity to Initial Conditions 

 

As we know, the main property of the chaotic systems is that of the sensitivity to the initial values. 
The high sensitivity to the initial conditions implies the existence of chaos. Figure 2 shows the 

different hyperchaotic behaviours exhibited by system (1) for two very near initial values  5( 10 )   that 

is due to the high sensitivity of the new hyperchaotic system (1) to the initial conditions. 
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Figure 1 Phase portraits of the four-scroll hyperchaotic attractor generated from system (1). (a) x-y 
attractor, (b) x-z attractor, (c) y-z attractor, (d) x-y-z attractor. 

 

 
 



 
 

 

 
 

 

Figure 2 Time series of the z variable for 0 01 (blue) and 1.00001 (red)z z   

2.3 Lyapunov Exponents and Kaplan-Yorke Dimension 

 

The two most important tools to characterize a chaotic behaviour of a system are the Lyapunov 
exponents and the Kaplan-Yorke dimension. The Lyapunov exponents of the proposed model (1) are 

shown in Figure 3 as: 

1 2 3 40.136, 0.068, 0.000, 7.603LE LE LE LE               (4) 

As shown in Figure 3, there are two positive Lyapunov exponents. Hence, the proposed 4-D system 

(1) is hyperchaotic. 

Then, the corresponding Kaplan-Yorke dimension is:  
1

1 1 11

1 2 3

4

1
where 0 and 0

3

0.204
3 3.026

7.603

j j j

KY j i i

j i ij

KY

KY

D j L L L
L

LE LE LE
D

LE

D



  

   

 
 

  


  

                           (5)                                

Since the Kaplan-Yorke dimension is fractal. So, the new model generates a complex hyperchaotic 

behaviour.   

 

 
Figure 3 Lyapunov exponents of the new system (1) for the  

parameters values (2) and the initial conditions (3) 

 

3.  Dynamical Analysis of the New Hyperchaotic System 

3.1 Dissipativity  

The divergence of the system (1) is calculated using the following equation:  

7.4
x y z w

V a a c
x y z w

   
          

   
     (6) 

Hence, 
7.4( ) (0) tdV t V e                                                                               (7) 



 
 

 

 
 

 

So the new system (1) is dissipative and its volume shrinks to zero at t →∞ with an exponential 

rate of (-7.4). Therefore, all system (1) orbits are ultimately confined to a specific subset of zero 

volume, and the asymptotic motion settles onto an attractor. 

3.2 Equilibrium Points and Stability  

In order to find the equilibrium points of the new 4-D hyperchaotic system (1) we should solving the 
following algebraic equations: 

(1 ) 0

0

0

0

ax y z

x ay bxz

cz bxy w

dz

   


  


  
 

        (8) 

We take the parameters values as in (2), it is easy to check that the system of equations (8) has one 
equilibrium point: 

 0, 0, 0, 0S                                                     (9) 

The stability of the equilibrium point S is discussed by linearizing system (1) at S using the 

following Jacobian matrix: 

, , ,

1 0

1 0

1

0 0 0

x y z w

a z y

bz a bx
J

by bx c

d

  
 
 

 
  
 

 

       (10) 

For the equilibrium point S (9), the Jacobian matrix become as follows: 

1 0 0

1 0 0

0 0 1

0 0 0

S

a

a
J

c

d

 
 


 
 
 

 

       (11) 

The corresponding characteristic equation is the following: 

0sJ                                                                 (12) 

In order to find the eigenvalues of the Jacobian matrix (11), the parameters values as in (2) is 

considered. We are solving the corresponding characteristic equation (12) and the following 

characteristic polynomial of SJ  is obtained:  
4 3 27.4 10.3 8.2 1.5            (13) 

Then, the characteristic polynomial has the following roots: 

1 2 3, 45, 3, 0.3 0.1i               (14) 

From (14) we note that exist two roots with positive real part, this shows that the equilibrium point 
S is unstable which implies chaos in the dissipative systems. 

 

3.3 Lyapunov Exponents Spectrum and Bifurcation Analysis 
 

Lyapunov exponents spectrum and bifurcation diagram represent the two most important tools to 

analyse the dynamical behaviour of the system. As it is known, the Lyapunov exponent is a measure 
of exponential rates of convergence and divergence for an uncertainty on the trajectories initial points. 

When it is positive the uncertainty increases, which means divergence of trajectories. So, the 

complexity of the dynamical behaviour increases with the increases in the number of positive 

Lyapunov exponents. 
 



 
 

 

 
 

 

In this subsection, dynamical properties of the new 4-D system (1) are discussed with the control 

parameter d varying. 

 
Fix a=4, b=0.5, c=0.c, and vary d 

 

When the parameters a, b and c are fixed, while parameter  0, 1d   is varied, The bifurcation 

diagram and the Lyapunov exponents spectrum of system (1) are depicted in Figure 4 and Figure 5 
respectively. We can see that the bifurcation diagram and the spectrum of the Lyapunov exponents are 

completely compatible.  

 

 
Figure 4 Bifurcation diagram of  system (1)  first state versus parameter d 

 

                             
Figure 5 Lyapunov exponents of  the system (1) versus parameter d 



 
 

 

 
 

 

 

 

From Figure 4 and Figure 5, we note that the new system can exhibit different dynamical 
behaviours with the variation of the control parameter d. system (1) can exhibit periodic behaviour, 

quasi-periodic behaviour, chaotic behaviour with four-scroll attractor and hyperchaotic behaviour with 

four-scroll attractor.  

When    0.55, 1 and 0.65, 0.74d d  , the new 4-D system (1) exhibits a periodic behaviour with 

one zero and three negatives Lyapunov exponents as depicted in Figure 6. When  0.46, 0.55d  , 

system (1) involves into a quasi-periodic attractor as shown in Figure 7 with two zero and two 

negatives Lyapunov exponents. When    0.37, 0.45 and 0.65, 0.74d d  , the proposed system (1) 

generates a chaotic behaviour with one positive Lyapunov exponents and four-scroll attractor as 

depicted in Figure 8. When  0.1, 0.36d  , the new proposed system (1) generate a hyperchaotic 

signals with two positive Lyapunov exponents and four-scroll attractor as shown in Figure 9.  

In Table 1, Lyapunov exponents, Kaplan-Yorke dimension and dynamics of the new 4-D system for 

different values of d   are given.  

 
 

 
 

Figure 6 Phase portraits of the periodic orbits 

when d=0.9 

 

 
 

Figure 7 Phase portraits of the quasi-periodic 
orbits when d=0.5 

 
 

Table 1 Lyapunov exponents, Kaplan-Yorke dimensin and  

dynamics of  system (1) with  parameter d varying 

 

d  
1LE   2LE  3LE  4LE  KYD  Dynamics Figure 

0.9 0 -0.160 -1.010 -6.231 0 Periodic 6 

0.5 0 0 0 -7.401 0 Quasi-

periodic 

7 

0.45 0.029 0 0 -7.431 3.004 Chaos 8 

0.15 0.132 0.043 0 -7.573 3.023 Hyperchaos 9 

 

 
 

 



 
 

 

 
 

 

 

 
 
Figure 8 Phase portraits of the four-scroll chaotic 

attractor when d=0.45 

 

 

 
 

Figure 9 Phase portraits of the four-scroll 

hyperchaotic attractor when d=0.15 

 

4.  Electronic Circuit 

 

In this section, an electronic circuit is designed using Multisim software to prove the feasibility of the 

proposed hyperchaotic system (1). The electronic circuit schematic of the new system (1) is shown in 
Figure 10.  

By applying Kirchhoff’s laws to the circuit in Figure 10, the corresponding circuital equations of the 

4-D system (1) are given as follows: 
 

1 1 2 1 3 1

4 2 5 2 6 2

7 3 8 3 9 3

10 4

1 1 1

1 1 1

1 1 1

1

x x y yz
R C R C R C

y x y xz
R C R C R C

z z xy w
R C R C R C

w z
R C


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


  


   


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


      (15) 

 

The values of the electronic circuit elements are chosen as follows:  
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Figure 11, Figure 12, Figure 13 and Figure 14 show respectively the periodic attractor, the quasi-

periodic attractor, the four-scroll chaotic attractor and the four-scroll hyperchaotic attractor of the new 

system (1) generated by the circuit in Figure 10 and obtained using Multisim software.  
We can see that Multisim results depicted in Figure 11, Figure 12, Figure 13 and Figure 14 are well 

consistent respectively with the Matlab simulation results shown in Figure 6, Figure 7, Figure 8 and 

Figure 9. Hence, the physical feasibility of the proposed system (1) is verified.  
 

 
 

Figure 10 The circuit schematic of the new hyperchaotic system (1) 
 

 
 
Figure 11 Multisim result of the x-z periodic orbit 

 

 

 

 
 

Figure 12 Multisim result of the x-z quasi-

periodic orbit 

 

 



 
 

 

 
 

 

 

 

 

 
 
Figure 13 Multisim result of the x-z  four-scroll 

chaotic attractor 

 

 

 

 
 

Figure 14 Multisim result of the x-z four-scroll 

hyperchaotic attractor 

5.  Conclusions 

In this work, a new four-dimensional hyperchaotic system with one equilibrium point and three 
quadratic nonlinearities is first constructed. This system has rich dynamical behaviours, it can exhibit 

hyperchaotic behaviour with four-scroll attractor, chaotic behaviour with four-scroll attractor, quasi-

periodic behaviour and periodic behaviour. Basic properties of the proposed model are studied by 
means of equilibrium points, phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, and 

bifurcation diagrams.  Then, the feasibility of the new hyperchaotic system is confirmed by designing 

its electronic circuit using Multisim software. We strongly believe that the very complex dynamical 
behaviour of this new 4-D four-scroll hyperchaotic system is desirable to use for many engineering 

applications in the near future. 
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Abstract. In this paper, a new 4-D hyperchaotic system with one equilibrium point is first 

introduced. It contains ten terms with three quadratic nonlinearities. Of particular interest is 

that this novel system can generate periodic attractor, quasi-periodic attractor, four-scroll 

chaotic attractor and four-scroll hyperchaotic attractor with the variation of one of its 

parameters. Major dynamical properties of the new system are investigated such as sensitivity 

to the initial conditions, dissipativity, equilibrium point stability, Kaplan-Yorke dimension, 

Lyapunov exponents spectrum and bifurcation diagram. In addition, an equivalent electronic 

circuit schematic is implemented using Multisim software; the obtained results confirm the 

feasibility of the proposed system. 
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1.  Introduction 

In the past 60 years, research on chaotic systems has a great intention from scientific communities, 

especially after the famous work of the American meteorologist Edward Lorenz in 1963 [1]. He 

identified the main property of the chaotic systems, which is the high sensitivity to the initial 

conditions.   A little variation in the initial values of the chaotic system lead to a very different and 

unpredictable behaviours. The high complex behaviour of this kind of systems make them very useful 

in many field of sciences such as secure communication [2-5].  

The main tool to characterize a chaotic behaviour of a dynamical system is the Lyapunov 

exponents. More clearly, a Lyapunov exponent is calculated by considering two adjacent initial values 

of a dynamical system. If this system exhibit a chaotic behaviour, the trajectories generating from 

those initial values will diverge exponentially, the parameter that characterize the rate of that 

divergence is a Lyapunov exponent. In fact, for each of the state-space dimensions there is a 
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corresponding Lyapunov exponent. For a dynamical system that exhibit a chaotic behaviour, at the 

minimum one of the exponents is positive. If there is more than one positive exponents the dynamics 

of the corresponding system expand in more than one direction, which means that it exhibit a more 

complex behaviour and we called it in this case: hyperchaotic system. 

One of the most important uses of the chaotic systems is to secure transmissions using different 

methods and schemes. The complex signals with random appearance that is generated by the chaotic 

systems are used to hide the secret information to be transmitted. For that reason, many of chaotic 

systems is introduced in literature [6-10] to meet with the high demand for this kind of complex 

systems in the fields of secure communication with chaotic encryption. Furthermore, as we said 

before, the researchers found that compared with the usual low dimensional chaotic systems; the high 

dimensional (n>3) hyperchaotic systems with more than one positive Lyapunov exponent can generate 

more complex and random signals with more unpredictability, which enhance the security of the 

chaotic transmissions. For these reasons, many of 4D hyperchaotic systems with two positive 

Lyapunov exponents have been constructed [11-15] after the first one of Rossler in 1979 [16].  

This work proposes a new 4-D hyperchaotic system with very high degree of disorder. It can 

exhibit four-scroll hyperchaotic attractor; four scroll chaotic attractor, quasi-periodic and periodic 

orbits, which make it very complex and very useful for applications that is need complexity.   

2.  The New 4-D Hyperchaotic System 
2.1 Algebraic Structure of The New System 

 

The new system (1) has four parameters, and comprises three nonlinear terms. It is described by the 

following 4-D autonomous differential equations: 

 

 1x ax y z

y x ay bxz

z cz bxy w

w dz

    


  


  
  

&

&

&

&

                                                    (1) 

 

Where x, y, z and w are the state variables and a, b and c are the positive constant parameters, d is 

the control parameter that belongs to [0, 1]. When the parameters values are chosen as: 

4, 0.5, 0.6, 0.1a b c d          (2) 

System (1) generates a four-scroll hyperchaotic attractor. In Figure 1, we generate the x-y, x-z, y-z 

and x-y-z attractors of system (1) using the MATLAB ode45 function and starting from the initial 

point: 

   0 0 0 0, , , 1, 1, 1, 1x y z w                                                               (3) 

 

2.2 Sensitivity to Initial Conditions 

 

As we know, the main property of the chaotic systems is that of the sensitivity to the initial values. 

The high sensitivity to the initial conditions implies the existence of chaos. Figure 2 shows the 

different hyperchaotic behaviours exhibited by system (1) for two very near initial values  5( 10 )   that 

is due to the high sensitivity of the new hyperchaotic system (1) to the initial conditions. 
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(c) 

 
(d) 

 

Figure 1 Phase portraits of the four-scroll hyperchaotic attractor generated from system (1). (a) x-y 

attractor, (b) x-z attractor, (c) y-z attractor, (d) x-y-z attractor. 

 

 
 

Figure 2 Time series of the z variable for 0 0
1 (blue) and 1.00001 (red)z z   
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2.3 Lyapunov Exponents and Kaplan-Yorke Dimension 

 

The two most important tools to characterize a chaotic behaviour of a system are the Lyapunov 

exponents and the Kaplan-Yorke dimension. The Lyapunov exponents of the proposed model (1) are 

shown in Figure 3 as: 

1 2 3 4
0.136, 0.068, 0.000, 7.603LE LE LE LE               (4) 

As shown in Figure 3, there are two positive Lyapunov exponents. Hence, the proposed 4-D system 

(1) is hyperchaotic. 

Then, the corresponding Kaplan-Yorke dimension is:  
1

1 1 11

1 2 3

4

1
where 0 and 0

3

0.204
3 3.026

7.603

j j j

KY j i i

j i ij

KY

KY

D j L L L
L

LE LE LE
D

LE

D



  

   

 
 

  


  

                           (5)                                

Since the Kaplan-Yorke dimension is fractal. So, the new model generates a complex hyperchaotic 

behaviour.   

 

 
Figure 3 Lyapunov exponents of the new system (1) for the  

parameters values (2) and the initial conditions (3) 

 

3.  Dynamical Analysis of the New Hyperchaotic System 

3.1 Dissipativity  

The divergence of the system (1) is calculated using the following equation:  

7.4
x y z w

V a a c
x y z w

   
          

   

& & & &
     (6) 

Hence, 
7.4( ) (0) tdV t V e                                                                               (7) 
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So the new system (1) is dissipative and its volume shrinks to zero at t →∞ with an exponential 

rate of (-7.4). Therefore, all system (1) orbits are ultimately confined to a specific subset of zero 

volume, and the asymptotic motion settles onto an attractor. 

3.2 Equilibrium Points and Stability  

In order to find the equilibrium points of the new 4-D hyperchaotic system (1) we should solving the 

following algebraic equations: 

(1 ) 0

0

0

0

ax y z

x ay bxz

cz bxy w

dz

   
   


  
 

        (8) 

We take the parameters values as in (2), it is easy to check that the system of equations (8) has one 

equilibrium point: 

 0, 0, 0, 0S                                                     (9) 

The stability of the equilibrium point S is discussed by linearizing system (1) at S using the 

following Jacobian matrix: 

, , ,

1 0

1 0

1

0 0 0

x y z w

a z y

bz a bx
J

by bx c

d

  
   
  
 

 

       (10) 

For the equilibrium point S (9), the Jacobian matrix become as follows: 

1 0 0

1 0 0

0 0 1

0 0 0

S

a

a
J

c

d

 
  
 
 

 

       (11) 

The corresponding characteristic equation is the following: 

0sJ                                                                 (12) 

In order to find the eigenvalues of the Jacobian matrix (11), the parameters values as in (2) is 

considered. We are solving the corresponding characteristic equation (12) and the following 

characteristic polynomial of 
S

J  is obtained:  
4 3 2

7.4 10.3 8.2 1.5            (13) 

Then, the characteristic polynomial has the following roots: 

1 2 3, 4
5, 3, 0.3 0.1i               (14) 

From (14) we note that exist two roots with positive real part, this shows that the equilibrium point 

S is unstable which implies chaos in the dissipative systems. 

 

3.3 Lyapunov Exponents Spectrum and Bifurcation Analysis 

 

Lyapunov exponents spectrum and bifurcation diagram represent the two most important tools to 

analyse the dynamical behaviour of the system. As it is known, the Lyapunov exponent is a measure 

of exponential rates of convergence and divergence for an uncertainty on the trajectories initial points. 

When it is positive the uncertainty increases, which means divergence of trajectories. So, the 

complexity of the dynamical behaviour increases with the increases in the number of positive 

Lyapunov exponents. 
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In this subsection, dynamical properties of the new 4-D system (1) are discussed with the control 

parameter d varying. 

 

Fix a=4, b=0.5, c=0.c, and vary d 

 

When the parameters a, b and c are fixed, while parameter  0, 1d   is varied, The bifurcation 

diagram and the Lyapunov exponents spectrum of system (1) are depicted in Figure 4 and Figure 5 

respectively. We can see that the bifurcation diagram and the spectrum of the Lyapunov exponents are 

completely compatible.  

 

 
Figure 4 Bifurcation diagram of  system (1)  first state versus parameter d 

 

                             
Figure 5 Lyapunov exponents of  the system (1) versus parameter d 
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From Figure 4 and Figure 5, we note that the new system can exhibit different dynamical 

behaviours with the variation of the control parameter d. system (1) can exhibit periodic behaviour, 

quasi-periodic behaviour, chaotic behaviour with four-scroll attractor and hyperchaotic behaviour with 

four-scroll attractor.  

When    0.55, 1 and 0.65, 0.74d d  , the new 4-D system (1) exhibits a periodic behaviour with 

one zero and three negatives Lyapunov exponents as depicted in Figure 6. When  0.46, 0.55d  , 

system (1) involves into a quasi-periodic attractor as shown in Figure 7 with two zero and two 

negatives Lyapunov exponents. When    0.37, 0.45 and 0.65, 0.74d d  , the proposed system (1) 

generates a chaotic behaviour with one positive Lyapunov exponents and four-scroll attractor as 

depicted in Figure 8. When  0.1, 0.36d  , the new proposed system (1) generate a hyperchaotic 

signals with two positive Lyapunov exponents and four-scroll attractor as shown in Figure 9.  

In Table 1, Lyapunov exponents, Kaplan-Yorke dimension and dynamics of the new 4-D system for 

different values of d   are given.  

 

 

 
 

Figure 6 Phase portraits of the periodic orbits 

when d=0.9 

 

 
 

Figure 7 Phase portraits of the quasi-periodic 

orbits when d=0.5 

 

 

Table 1 Lyapunov exponents, Kaplan-Yorke dimensin and  

dynamics of  system (1) with  parameter d varying 

 

d  
1LE   2LE  3LE  4LE  

KY
D  Dynamics Figure 

0.9 0 -0.160 -1.010 -6.231 0 Periodic 6 

0.5 0 0 0 -7.401 0 Quasi-

periodic 

7 

0.45 0.029 0 0 -7.431 3.004 Chaos 8 

0.15 0.132 0.043 0 -7.573 3.023 Hyperchaos 9 
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Figure 8 Phase portraits of the four-scroll chaotic 

attractor when d=0.45 

 

 

 
 

Figure 9 Phase portraits of the four-scroll 

hyperchaotic attractor when d=0.15 

 

4.  Electronic Circuit 

 

In this section, an electronic circuit is designed using Multisim software to prove the feasibility of the 

proposed hyperchaotic system (1). The electronic circuit schematic of the new system (1) is shown in 

Figure 10.  

By applying Kirchhoff’s laws to the circuit in Figure 10, the corresponding circuital equations of the 

4-D system (1) are given as follows: 

 

1 1 2 1 3 1

4 2 5 2 6 2

7 3 8 3 9 3

10 4

1 1 1

1 1 1

1 1 1

1

x x y yz
R C R C R C

y x y xz
R C R C R C

z z xy w
R C R C R C

w z
R C

    



  


   


  

&

&

&

&

      (15) 

 

The values of the electronic circuit elements are chosen as follows:  

 

1 5

2 3 4 9

6 8

7

10

18

11

1 2 3 4

100

400

800

666.67

4

100

1

j

j

R R k

R R R R k

R R k

R k

R M

R k

C C C C nF




   
     


  


 
  


 

    



    (16) 
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Figure 11, Figure 12, Figure 13 and Figure 14 show respectively the periodic attractor, the quasi-

periodic attractor, the four-scroll chaotic attractor and the four-scroll hyperchaotic attractor of the new 

system (1) generated by the circuit in Figure 10 and obtained using Multisim software.  

We can see that Multisim results depicted in Figure 11, Figure 12, Figure 13 and Figure 14 are well 

consistent respectively with the Matlab simulation results shown in Figure 6, Figure 7, Figure 8 and 

Figure 9. Hence, the physical feasibility of the proposed system (1) is verified.  

 

 
 

Figure 10 The circuit schematic of the new hyperchaotic system (1) 

 

 

Figure 11 Multisim result of the x-z periodic orbit 

 

 

 

 

Figure 12 Multisim result of the x-z quasi-

periodic orbit 
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Figure 13 Multisim result of the x-z  four-scroll 

chaotic attractor 

 

 

 

 

Figure 14 Multisim result of the x-z four-scroll 

hyperchaotic attractor 

5.  Conclusions 

In this work, a new four-dimensional hyperchaotic system with one equilibrium point and three 

quadratic nonlinearities is first constructed. This system has rich dynamical behaviours, it can exhibit 

hyperchaotic behaviour with four-scroll attractor, chaotic behaviour with four-scroll attractor, quasi-

periodic behaviour and periodic behaviour. Basic properties of the proposed model are studied by 

means of equilibrium points, phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, and 

bifurcation diagrams.  Then, the feasibility of the new hyperchaotic system is confirmed by designing 

its electronic circuit using Multisim software. We strongly believe that the very complex dynamical 

behaviour of this new 4-D four-scroll hyperchaotic system is desirable to use for many engineering 

applications in the near future. 
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