
ICCOMSET-2018 

ABS-227 

 

 

 

 

 

 



URL JPCS-1179: https://iopscience.iop.org/issue/1742-6596/1179/1  

URL pdf: https://iopscience.iop.org/article/10.1088/1742-6596/1179/1/012083/pdf  

URl abstract: https://iopscience.iop.org/article/10.1088/1742-6596/1179/1/012083  

Link indexing: https://www.scimagojr.com/journalsearch.php?q=130053&tip=sid&clean=0  

https://iopscience.iop.org/issue/1742-6596/1179/1
https://iopscience.iop.org/article/10.1088/1742-6596/1179/1/012083/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/1179/1/012083
https://www.scimagojr.com/journalsearch.php?q=130053&tip=sid&clean=0


 ICComSET 2018 - Letter of Acceptance 
 

 
 

ICComSET 2018 
The 1st International Conference on Computer, Science, Engineering 

and Technology 

Universitas Muhammadiyah Tasikmalaya/Tasikmalaya,   

27-28 November 2018 

Website: http://www.iccomset.umtas.ac.id 

Email: iccomset@umtas.ac.id 
 

 

 
 

Date: 11 October 2018 
 

 
 

Letter of Acceptance for Abstract 

 

 
Dear Authors: S Vaidyanathan1,*, A Sambas2 , S Zhang3 , Mujiarto2 , M Mamat4 and Subiyanto5 

We are pleased to inform you that your abstract (ABS-227, Oral Presentation), entitled: 

"A Chaotic Jerk System with Three Cubic Nonlinearities, Dynamical Analysis, Adaptive Chaos 

Synchronization and Circuit Simulation" 
 

has been reviewed and accepted to be presented at ICComSET 2018 conference to be held on 
27-28 November 2018 in Tasikmalaya, Indonesia. 

 

Please submit your full paper and make the payment for registration fee before the deadlines, visit our 
website for more information. 

 

Thank You. 

Best regards, 

 

 

 

 

Dr. Mujiarto, S.T.,M.T. 
ICComSET 2018 Chairperson 

 

Konfrenzi.com - Conference Management System 

 

 

 

 

 

 

 

 

 

 1/1 

has 
bee
n 
rev
ie
we
d 
an
d 
acc
ept
ed 
to 
be 
pre
sen
ted 
at 
IC
Co
mS

Print this page 

http://www.iccomset.umtas.ac.id/
mailto:iccomset@umtas.ac.id


 ICComSET 2018 - Letter of Acceptance 

 

 
 

ICComSET 2018 
The 1st International Conference on Computer, Science, Engineering 

and Technology 

Universitas Muhammadiyah Tasikmalaya/Tasikmalaya,   

27-28 November 2018 

Website: http://www.iccomset.umtas.ac.id 

Email: iccomset@umtas.ac.id 
 

 

 
 

Date: 20 October 2018 
 

 
 

Letter of Acceptance for Full Paper 

 

 
Dear Authors: S Vaidyanathan1,*, A Sambas2 , S Zhang3 , Mujiarto2 , M Mamat4 and Subiyanto5 

We are pleased to inform you that your paper, entitled: 

"A Chaotic Jerk System with Three Cubic Nonlinearities, Dynamical Analysis, Adaptive Chaos 

Synchronization and Circuit Simulation" 
 

has been reviewed and accepted to be presented at ICComSET 2018 conference to be held on 
27-28 November in Tasikmalaya, Indonesia. 

 

Please make the payment for registration fee before the deadlines, visit our website for more information. 

Thank You. 

Best regards, 
 

 
 

 

 

Dr. Mujiarto, S.T.,M.T. 
ICComSET 2018 Chairperson 

 
 

Konfrenzi.com - Conference Management System 

 
 
 
 
 
 
 
 

 
 1/1 

has 
bee

n 
rev
ie
we

d 
an
d 

acc
ept
ed 
to 

be 
pre
sen

ted 
at 
IC

Co
mS
ET 

Print this page 

http://www.iccomset.umtas.ac.id/
mailto:iccomset@umtas.ac.id


 ICComSET 2018 - Letter of Invitation 

 

 
 

ICComSET 2018 
The 1st International Conference on Computer, Science, Engineering 

and Technology 

Universitas Muhammadiyah Tasikmalaya/Tasikmalaya,   

27-28 November 2018 

Website: http://www.iccomset.umtas.ac.id 

Email: iccomset@umtas.ac.id 
 

 

 
 

Date: 25 October 2018 
 

 
 

Letter of Invitation 

 

 
Dear Authors: S Vaidyanathan1,*, A Sambas2 , S Zhang3 , Mujiarto2 , M Mamat4 and Subiyanto5 

We are pleased to inform you that your abstract (ABS-227, Oral Presentation), entitled: 

"A Chaotic Jerk System with Three Cubic Nonlinearities, Dynamical Analysis, Adaptive Chaos 

Synchronization and Circuit Simulation" 
 

has been reviewed and accepted to be presented at ICComSET 2018 conference to be held on 
27-28 November 2018 in Tasikmalaya, Indonesia. 

 

We cordially invite you to attend our conference and present your research described in the abstract. 
 

Please submit your full paper and make the payment for registration fee before the deadlines, visit our 
website for more information. 

 

Thank You. 

Best regards, 

 

 

 

 

Dr. Mujiarto, S.T.,M.T. 
ICComSET 2018 Chairperson 

 

Konfrenzi.com - Conference Management System 

 
 
 
 
 
 
 

 1/1 

has 

bee
n 
rev

ie
we
d 

an
d 
acc
ept

ed 
to 
be 

pre
sen
ted 
at 

IC
Co

Print this page 

http://www.iccomset.umtas.ac.id/
mailto:iccomset@umtas.ac.id


Print this page 

 ICComSET 2018- Letter of Invitation 

 

 

 

ICComSET 2018 
The 1st International Conference on Computer, Science, Engineering 

and Technology 

Universitas Muhammadiyah Tasikmalaya/Tasikmalaya,   

27-28 November 2018 

Website: http://www.iccomset.umtas.ac.id 

Email: iccomset@umtas.ac.id 
 

 

 
 

Date: 30 October 2018 
 

 
 

Letter of Invitation 

 

 
Dear Authors: S Vaidyanathan1,*, A Sambas2 , S Zhang3 , Mujiarto2 , M Mamat4 and Subiyanto5 

We are pleased to inform you that your paper, entitled: 

"A Chaotic Jerk System with Three Cubic Nonlinearities, Dynamical Analysis, Adaptive Chaos 

Synchronization and Circuit Simulation" 
 

has been reviewed and accepted to be presented at ICComSET 2018 conference to be held on 
27-28 November 2018 in Tasikmalaya, Indonesia. 

 

We cordially invite you to attend our conference and present your research described in the paper. 
 

Please make the payment for registration fee before the deadlines, visit our website for more information. 

Thank You. 

Best regards, 
 

 

 

 

 

Dr. Mujiarto, S.T.,M.T. 
ICComSET 2018 Chairperson 

 

Konfrenzi.com - Conference Management System 

 
 
 
 
 
 
 

 

 1/1 

has 
bee

n 
rev
ie
we

d 
an
d 

acc
ept
ed 
to 

be 
pre
sen

ted 
at 
IC

Co
mS

http://www.iccomset.umtas.ac.id/
mailto:iccomset@umtas.ac.id


 

 
 
 
 
  

A Chaotic Jerk System with Three Cubic Nonlinearities, 

Dynamical Analysis, Adaptive Chaos Synchronization and 

Circuit Simulation 

 
S Vaidyanathan1,*, A Sambas2, S Zhang

3
, Mujiarto

2
, M Mamat4 and Subiyanto

5
 

1Research and Development Centre, Vel Tech University, Avadi, Chennai, India  

2Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Indonesia 
3School of Physics and Opotoelectric Engineering, Xiangtan University, Hunan, China  
4Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia 
5Department of Marine Science, Faculty of Fishery and Marine Science, Universitas Padjadjaran, 
Indonesia 

 

sundarvtu@gmail.com 

 
 
Abstract. A 3-D new chaotic jerk system with three cubic nonlinearities is proposed in this paper. The dynamical 
properties of the new jerk system are described in terms of phase portraits, Lyapunov exponents, Kaplan-
Yorke dimension, symmetry, dissipativity, etc. Also, a detailed dynamical analysis of the jerk system has been 
carried out with bifurcation diagram and Lyapunov exponents. As an engineering application, adaptive 
synchronization of the new chaotic jerk system with itself is designed via backstepping control method. 
Furthermore, an electronic circuit realization of the new chaotic jerk system is presented in detail to confirm the 
feasibility of the theoretical chaotic jerk model. 

 

 
1. Introduction 
Chaos theory deals with chaotic systems which are nonlinear dynamical systems exhibiting high 
sensitivity to small changes in initial conditions [1-2]. Chaotic systems are very useful in many 
applications in science and engineering such as temperature model [3], biology [4], physics [5], 
cellular neural networks [6], satellite [7], robotics [8], encryption [9], finance systems [10], circuits 
[11-12], etc. 
In physics, a jerk ODE can be written as the third order dynamics 

d 3x 
  






dx d 2 x 


 



(1) 
dt3 

 x, , 2  

 dt  dt  

dx 
 

d 2 x 
 

d 3x 
In (1), x(t) stands for the displacement, the velocity, 

dt dt 2 
the acceleration and 

dt3 
the jerk. 

Thus, we call the ODE (1) as the jerk differential equation. 
For qualitative analysis, it is convenient to express the third-order ODE (1) in a system form. This is 
achieved by defining the following phase variables: 
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x1  x2 


x  x  2 3 

x1  x2 


x  x  2 3 

 2 

 3 

 
 

x1(t)  x(t) 


x (t)  x(t) 

x (t) 






(2) 

Thus, the phase variables in (2) can be viewed as the displacement, velocity and acceleration, 
respectively. Using them, we can express the jerk differential equation (1) as follows: 

 

 x  (x , x , x ) 
(3) 

 3 1     2     3 

Many jerk systems have been found in the chaos literature [13-17]. Jerk systems have important 
applications in mechanical engineering [1-2]. Some famous jerk systems are Sprott systems [13], Li 
system [14], Elsonbaty system [15], Coullet system [16], Vaidyanathan systems [17], etc. 

In this research paper, we report the finding of a new chaotic jerk system with three cubic 
nonlinearities. We describe the phase plots of the jerk system and do a rigorous dynamic analysis by 
finding bifurcation diagrams, Lyapunov exponents, Kaplan-Yorke dimension, symmetry analysis, etc. 

As a control application, we derive new results for the adaptive synchronization of the new chaotic 
jerk system with itself with unknown parameters. Synchronization of chaotic systems deals with the 
control problem of finding suitable feedback control laws so as to asymptotically synchronize the 
respective trajectories of a pair of chaotic systems called as master and slave systems. We use 
backstepping control method for achieving global chaos synchronization of the new chaotic jerk 
system with itself. Backstepping control method is a recursive procedure used for stabilizing nonlinear 
dynamical systems. 

Section 2 describes the new chaotic jerk system, its phase plots and Lyapunov exponents. Section 3 
describes the dynamic analysis of the new chaotic jerk system. Section 4 describes the backstepping- 
based adaptive synchronization of the new chaotic jerk system with itself. Furthermore, an electronic 
circuit realization of the new chaotic system is presented in detail in Section 5. The circuit 
experimental results of the new chaotic jerk system in Section 5 agreement with the numerical 
simulations via MATLAB obtained in Section 2. Section 6 contains the main conclusions. 

2. A new chaotic jerk system with three cubic nonlinearities 
In this work, we report a new 3-D chaotic jerk system given by the dynamics 

 

 
x  x  ax  bx2 x  x x2  x3 

(4) 

 
where 

 3 1 3 1    3 1   2 1 

x1, x2 , x3 are state variables and a, b are positive constants. 

In this paper, we show that the jerk system (1) is chaotic for the parameter values 

a  2, b  0.2 (5) 

For numerical simulations, we take the initial values of the jerk system (4) as X (0)  (0.2, 0.2, 0.2). 

Figure 1 shows the phase portraits of the strange attractor of the new chaotic jerk system (4) for 

(a,b)  (2, 0.2) and initial conditions   X (0)  (0.2, 0.2, 0.2). Figure 1 (a) shows the 3-D phase 

portrait of the new chaotic jerk system (4). Figures 1 (b)-(c) show the projections of the new chaotic 

system (4) in   x1, x2 ,  x2 , x3  and  x1, x3  coordinate planes, respectively. 

x(t) 



 

3 

 

 

1 1 

 

 

 

 

 

Figure 1. Plots of the chaotic jerk system (4) for (a,b)  (2, 0.2) and X (0)  (0.2, 0.2, 0.2) 

For the rest of this section, we take the values of the parameters a and b as in the chaotic case (5), i.e. 

(a,b)  (2, 0.2) 

The equilibrium points of the new chaotic jerk system (4) are obtained by solving the system of 
equations 

 

 
x  ax 

 

 
 bx2x 

x2  0 

x3  0 

 x x2  x3  0 

(6a) 

(6b) 

(6c) 
1 3 1    3 1   2 1 

From (6a) and (6b), we deduce that x2  x3  0. 

Substituting these in (6c), we obtain x 1 x
2   0. This gives x1  0. 

Hence, E0  (0, 0, 0) is the unique equilibrium of the chaotic jerk system (4). 

The Jacobian matrix of the new jerk system (4) at 

 0 1 0 

J   0 0 1 

E0  (0, 0, 0) is obtained as 
 

 
(7) 

1   0    2

The Jacobian matrix J has the spectral values 2.2056, 0.1028  0.6655i. 

This shows that the equilibrium point E0 is a saddle-focus and unstable. 

We note that the new chaotic system (4) is invariant under the coordinates transformation 

 x1, x2, x3  x1, x2, x3 


(8) 

for all values of the parameters. This shows that the new chaotic system (4) has point-reflection 

symmetry about the equilibrium E0  (0, 0, 0). 

For the parameter values as in the chaotic case (5) and the initial state X (0)  (0.2, 0.2, 0.2), the 

Lyapunov exponents of the new jerk system (4) are determined using Wolf’s algorithm as 

LE1  0.1680, LE2  0, LE3  2.6705 

 
(9) 

The jerk system (4) is chaotic since LE1  0.1680  0. Thus, the system (4) exhibits a self-excited 

strange chaotic attractor. Also, we note that the sum of the Lyapunov exponents in (9) is negative. This 
shows that the jerk system (4) is dissipative. 
The Kaplan-Yorke dimension of the jerk system (4) is determined as 



 

4 

 

 

 

 

D  2  
LE1  LE2  2.0629, (10) 

| LE3 | 

which indicates the high complexity of the chaotic jerk system (4). 
Figure 2 shows the Lyapunov exponents of the new chaotic jerk system (4) with self-excited, strange 
chaotic attractor. 

Figure 2. Lyapunov exponents of the new chaotic jerk system (4) for (a,b)  (2, 0.2) 

3. Bifurcation Analysis for the New Chaotic Jerk System 
In this section, we describe a bifurcation analysis for the new chaotic jerk system (4) introduced in 
Section 2. Bifurcation analysis is an important topic for understanding chaotic systems [18-22]. 

Some sample results are plotted to verify the reversed period-doubling route to chaos in Figure 3. 

 
(a) a  3, period-1 (b) a  2.86, period-2 

(c) a  2.85, period-4 (d) a  2.8, chaos 

 
(e) a  2.7, chaos (f) a  2.58, period-3 

 

Figure 3. Some sample plots of the jerk system (4) for different values of a when we fix b  0.2 

KY 
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Next, we fix b  0.2, the initial state as X (0)  (0.2, 0.2, 0.2) and vary a in [2,3]. 

From the bifurcation diagram given in Figure 4, we see that new chaotic jerk system (4) exhibits 
chaos, period, reversed period-doubling route, as well as several periodic windows. Note that there is a 
large period-3 periodic window. 

 

Figure 4. Bifurcation diagram and Lyapunov exponents for the new chaotic jerk 

system (4) when we fix b  0.2 and vary a in the interval [2,3] 

Next,   we   fix a  2, initial   state   as X (0)  (0.2, 0.2, 0.2) and vary b in [0.2, 0.45]. The 

corresponding bifurcation diagram and Lyapunov exponents for the new chaotic jerk system (4) are 
shown in Figure 5. Obviously, from the bifurcation diagram, one can get that the system shows a 
reversed period-doubling route to chaos in the whole region. Note that there is a large period-3 
periodic window. 

Figure 5. Bifurcation diagram and Lyapunov exponents for the new chaotic jerk 

system (4) when we fix a  2 and vary b in the interval [0.2, 0.45] 

Next, we describe our results for coexisting attractors. We note that the blue color denotes the 

trajectory of the new chaotic jerk system (4) starting from X0  (0.2, 0.2, 0.2) and the red color 

denotes the trajectory of the new chaotic jerk system (4) starting from Y0  (0.2, 0.2, 0.2). 

We fix b  0.2 and vary a in the interval [2,3]. As can be seen from the bifurcation diagram given in 

Figure 6, there exists coexisting attractors in the region of [2.75, 2.9]. 

Figure 6. Bifurcation diagram for the new chaotic jerk system 

(4) when we fix b  0.2 and vary a in the interval [2,3]. 
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x1  x2 


x   x  2 3 

 y1  y2 
 

y  y  2 3 

ea     A(t) 

eb   B(t) 

 3 1 3 1     3 1    3 1   2 1   2 1 1 

 

 

 
 

 

 

 

 

 

 

 

 

(a) a  2.8,b  0.2 (b) a  2.86,b  0.2 
 

Figure 7. (a) When a  2.8, coexisting chaotic attractors, and (b) when a  2.86, 

coexisting period-2 attractors for the new chaotic jerk system (4). We fix b  0.2. 
 

4. Backstepping-Based Global Chaos Synchronization of the Chaotic Jerk Systems 
In this section, we use backstepping control method to achieve global chaos synchronization of the 
new chaotic jerk systems. 
As the master system for the synchronization, we consider the new chaotic jerk system 

 

 
x  x  ax  bx2 x  x x2  x3 

(11) 

 
In (11), 

 3 1 3 1    3 1   2 1 

x1, x2 , x3 are the states and a, b are unknown state parameters. 

As the slave system for the synchronization, we consider the new chaotic jerk system 

(12) 
 

y   y  ay  by2 y  y y2  y3  u 
 

 3 1 3 1    3 1   2 1 

In (12), y1, y2 , y3 are the states and u is a backstepping control to be designed. 

The synchronization error between the jerk systems (11) and (12) can be classified as follows: 

e1  y1  x1, e2  y2  x2 , e3  y3  x3 (13) 

We find the error dynamics as follows: 

 


e  e  ae   b( y2 y   x2 x )  y y2  x x2  y3  x3  u 

 

(14) 

We denote A(t), B(t) as estimates for the unknown parameters a, b, respectively. 

The error between the parameters and their estimates is defined as follows: 

ea (t)  a  A(t), 

It is easy to see that 



eb (t)  b  B(t) (15) 

 
(16) 

 

Using adaptive backstepping control, we establish a key result of this section. 

Theorem 1. The master and slave chaotic jerk systems represented by (11) and (12) with unknown 

parameters a and b are globally and exponentially synchronized by means of the adaptive 

backstepping controller using estimates A(t) and B(t) given by 

u  2e  5e  3  A(t)e  B(t)  y2 y   x2 x   y y2  x x2  y3  x3  K (17) 
1 2 3 1    3 1    3 1   2 1   2 1 1 3 

 

where K  0 is a gain constant, 

e1  e2 


e   e  2 3 
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 3       1    3 1    3 

1 1 1 

a b 1 2 3 a b 

a 3 b 1    3 1    3 3 

1 2 3 a 3  3 b 3 1    3 1   3 

 

 

3  2e1  2e2  e3 

and the update law for the estimates 

 A  3e3    

 

A(t), B(t) is given by 

(18) 

 
 

(19) 

B     y2 y   x2 x  

Proof. The result is proved via backstepping control method, which is a recursive procedure in 
Lyapunov stability theory. We start with the Lyapunov function 

V ( )  0.5  2 

where 1  e1. 

Differentiating V1 along the error dynamics (14), we get 

(20) 

V     e e  e2  e e  e  (21) 
1 1   1 1  2 1 1 1 2 

We define 

2  e1  e2 

Using Eq. (22), we can simplify Eq. (21) as 
 

2 

Next, we define the Lyapunov function 

(22) 

 
(23) 

V  ,   V ( )  0.5 2 
 0.5 2 

 2  (24) 
2 1 2 1 1 2 1 2 

Differentiating V2 along the error dynamics (14), we get 

V   2  2  2e  2e  e  (25) 
2 1 2 2 1 2 3 

We define 

3  2e1  2e2  e3 

Using (26), we can express (25) as 

(26) 

V   2 
 2 

  (27) 
2 1 2 2    3 

To simplify the notation, we set   (1,2,3). 

Finally, we define the quadratic Lyapunov function 

V ( , e , e )  0.5 2 
 2 

 2   0.5e2  e2 






(28) 

It is evident that V is a positive definite function on R5. 

Differentiating V along the error dynamics (14) and (16), we get 

 
 

(29) 

where 

T  3 2 3  3 2  2e1  2e2  e3 


(30) 

A simple calculation shows that 

T  2e  5e   (3  a)e   b  y2 y   x2x  y y2  x x2  y3  x3  u (31) 
1 2 3 1    3 1    3 1   2 1   2 1 1 

Substituting the value of u from Eq. (17) into Eq. (31), we obtain 

T  [a  A(t)]e [b  B(t)] y2 y   x2x   K (32) 
3 1    3 1    3 3 

We can simplify Eq. (32) by using the definitions given in Eq. (15) as follows: 

T  e e  e  y2 y  x2x   K (33) 

Substituting the value of T from Eq. (33) into Eq. (29), we get 

V   2  2  (1 K) 2  e  ( e   A)  e    y
2 y  x2 x   B (34) 

Implementing the parameter update law (19) into Eq. (34), we get 

V    2 

1 1 1 

V         T  e A  e B 
2 2 2 

1 2 3 3 a b 
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1 2 3 

 

 

V   2 
 2 

 (1 K) 2 

which is a negative semi-definite function on R5. 

Thus, by Barbalat’s lemma [23] in Lyapunov stability theory, we conclude that 

exponentially as t  . Hence, it follows that e(t)  0 as t  . 

This completes the proof. 

For numerical plots, we take the constants (a, b) as in the chaotic case, viz. (a,b)  (2, 0.2). 

(35) 

 
 (t)  0 

We take the gain as K  10. 
The initial conditions of the master jerk system (11) are picked as 

x1(0)  2.6, x2 (0)  0.3, x3(0) 1.2 (36) 

The initial conditions of the slave jerk system (12) are taken as 

y1(0)  1.7, y2 (0)  3.8, y3(0)  4.9 (37) 

The initial conditions of the parameter estimates are taken as 

A(0)  2.8, B(0)  7.4 

Figure 8 shows the global chaos synchronization of the chaotic jerk systems (11) and (12). 

 
(38) 

 

 

 
 

Figure 8 Synchronization of the chaotic jerk systems (11) and (12) 

5. Circuit Implementation of the New Chaotic Jerk System 
In this work, we describe a realization of theoretical jerk model (4) by using electronic components. 
As shown in Figure 9, the circuit includes three op-amp integrator circuits based on three operational 
amplifiers (U1A, U2A, U3A), three inverting amplifiers (U5A, U6A, U7A) which are implemented 
with the operational amplifier TL082CD and five multipliers by using AD633JN. 
The circuital equations of the designed jerk circuit are given by 
 1 

x1  
C R   

x2 (39) 
 1    1 

 1 

x2  
C  R   

x3 

 2     2 
 1 1 

 
1 2 1 

 
2 1 3 

x3    
C  R   

x1  
C  R

 
x3  

100C R 
x1   x3  

100C R x1 x2  x1 100C R 
 3    3 3     4 3    5 3    6 3    7 
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where x , y , and z are the voltages across the capacitors C1, C2 and C3, respectively. Equations (39) 

match Eqs. (1) when the circuit components are selected as follows: R4 = 50 kfi, R5 = 5 kfi, R6 = R7 = 

1 kfi, R1 = R2 = R3 = R8 = R9 = R10 = R11 = R12 = R13 = 100 kfi, C1 = C2 = C3 = 1 nF. MultiSIM phase 
portraits of the circuit are represented in Figure 10. Once more a very good qualitative agreement can 
be observed between numerical simulations (see Figure 1) and MultiSIM results (see Figure 10). 

 
Figure 9. The electronic circuit schematic of new chaotic jerk system 
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(a) 

 

(b) (c) 
 

Figure 10. MultiSIM chaotic attractors of the new chaotic jerk system (4) 

(a) x1- x2 plane (b) x2- x3 plane and (c) x1-x3 plane. 
 

6. Conclusions 
A new chaotic jerk system with three cubic nonlinearities is proposed in this paper. The dynamical 
properties of the new jerk system are described in terms of phase portraits, Lyapunov exponents, 
Kaplan-Yorke dimension, symmetry, dissipativity, etc. Also, a detailed dynamical analysis of the jerk 
system was done using bifurcation diagram and Lyapunov exponents, and we exhibited coexisting 
chaotic attractors for the new jerk system. The adaptive backstepping-based synchronization of the 
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new chaotic jerk system with itself was designed. Furthermore, an electronic circuit realization of the 
new jerk system was shown to confirm the feasibility of the jerk system. 
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Abstract. A 3-D new chaotic jerk system with three cubic nonlinearities is proposed in this 
paper. The dynamical properties of the new jerk system are described in terms of phase 
portraits, Lyapunov exponents, Kaplan-Yorke dimension, symmetry, dissipativity, etc. Also, a 
detailed dynamical analysis of the jerk system has been carried out with bifurcation diagram 
and Lyapunov exponents. As an engineering application, adaptive synchronization of the new 
chaotic jerk system with itself is designed via backstepping control method. Furthermore, an 
electronic circuit realization of the new chaotic jerk system is presented in detail to confirm the 
feasibility of the theoretical chaotic jerk model. 

 

 
1. Introduction 
Chaos theory deals with chaotic systems which are nonlinear dynamical systems exhibiting high 
sensitivity to small changes in initial conditions [1-2]. Chaotic systems are very useful in many 
applications in science and engineering such as temperature model [3], biology [4], physics [5], 
cellular neural networks [6], satellite [7], robotics [8], encryption [9], finance systems [10], circuits 
[11-12], etc. 
In physics, a jerk ODE can be written as the third order dynamics 

d 3x 
  






dx d 2 x 


 


(1) 
dt3 

 x, , 2  

 dt  dt  

dx 
 

d 2 x 
 

d 3x 
In (1), x(t) stands for the displacement, the velocity, 

dt dt 2 
the acceleration and 

dt3 
the jerk. 

Thus, we call the ODE (1) as the jerk differential equation. 
For qualitative analysis, it is convenient to express the third-order ODE (1) in a system form. This is 
achieved by defining the following phase variables: 
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x1  x2 


x  x  2 3 

x1  x2 


x  x  2 3 

 2 

 3 

 
 

x1(t)  x(t) 


x (t)  x(t) 

x (t) 






(2) 

Thus, the phase variables in (2) can be viewed as the displacement, velocity and acceleration, 
respectively. Using them, we can express the jerk differential equation (1) as follows: 

 

 x  (x , x , x ) 
(3) 

 3 1     2     3 

Many jerk systems have been found in the chaos literature [13-17]. Jerk systems have important 
applications in mechanical engineering [1-2]. Some famous jerk systems are Sprott systems [13], Li 
system [14], Elsonbaty system [15], Coullet system [16], Vaidyanathan systems [17], etc. 

In this research paper, we report the finding of a new chaotic jerk system with three cubic 
nonlinearities. We describe the phase plots of the jerk system and do a rigorous dynamic analysis by 
finding bifurcation diagrams, Lyapunov exponents, Kaplan-Yorke dimension, symmetry analysis, etc. 

As a control application, we derive new results for the adaptive synchronization of the new chaotic 
jerk system with itself with unknown parameters. Synchronization of chaotic systems deals with the 
control problem of finding suitable feedback control laws so as to asymptotically synchronize the 
respective trajectories of a pair of chaotic systems called as master and slave systems. We use 
backstepping control method for achieving global chaos synchronization of the new chaotic jerk 
system with itself. Backstepping control method is a recursive procedure used for stabilizing nonlinear 
dynamical systems. 

Section 2 describes the new chaotic jerk system, its phase plots and Lyapunov exponents. Section 3 
describes the dynamic analysis of the new chaotic jerk system. Section 4 describes the backstepping- 
based adaptive synchronization of the new chaotic jerk system with itself. Furthermore, an electronic 
circuit realization of the new chaotic system is presented in detail in Section 5. The circuit 
experimental results of the new chaotic jerk system in Section 5 agreement with the numerical 
simulations via MATLAB obtained in Section 2. Section 6 contains the main conclusions. 

2. A new chaotic jerk system with three cubic nonlinearities 
In this work, we report a new 3-D chaotic jerk system given by the dynamics 

 

 
x  x  ax  bx2 x  x x2  x3 

(4) 

 
where 

 3 1 3 1    3 1   2 1 

x1, x2 , x3 are state variables and a, b are positive constants. 

In this paper, we show that the jerk system (1) is chaotic for the parameter values 

a  2, b  0.2 (5) 

For numerical simulations, we take the initial values of the jerk system (4) as X (0)  (0.2, 0.2, 0.2). 

Figure 1 shows the phase portraits of the strange attractor of the new chaotic jerk system (4) for 

(a,b)  (2, 0.2) and initial conditions   X (0)  (0.2, 0.2, 0.2). Figure 1 (a) shows the 3-D phase 

portrait of the new chaotic jerk system (4). Figures 1 (b)-(c) show the projections of the new chaotic 

system (4) in   x1, x2 ,  x2 , x3  and  x1, x3  coordinate planes, respectively. 

x(t) 



 

3 

 

 

1 1 

 

 

 

 

 

Figure 1. Plots of the chaotic jerk system (4) for (a,b)  (2, 0.2) and X (0)  (0.2, 0.2, 0.2) 

For the rest of this section, we take the values of the parameters a and b as in the chaotic case (5), i.e. 

(a,b)  (2, 0.2) 

The equilibrium points of the new chaotic jerk system (4) are obtained by solving the system of 
equations 

 

 
x  ax 

 

 
 bx2x 

x2  0 

x3  0 

 x x2  x3  0 

(6a) 

(6b) 

(6c) 
1 3 1    3 1   2 1 

From (6a) and (6b), we deduce that x2  x3  0. 

Substituting these in (6c), we obtain x 1 x
2   0. This gives x1  0. 

Hence, E0  (0, 0, 0) is the unique equilibrium of the chaotic jerk system (4). 

The Jacobian matrix of the new jerk system (4) at 

 0 1 0 

J   0 0 1 

E0  (0, 0, 0) is obtained as 
 

 
(7) 

1   0    2

The Jacobian matrix J has the spectral values 2.2056, 0.1028  0.6655i. 

This shows that the equilibrium point E0 is a saddle-focus and unstable. 

We note that the new chaotic system (4) is invariant under the coordinates transformation 

 x1, x2, x3  x1, x2, x3 


(8) 

for all values of the parameters. This shows that the new chaotic system (4) has point-reflection 

symmetry about the equilibrium E0  (0, 0, 0). 

For the parameter values as in the chaotic case (5) and the initial state X (0)  (0.2, 0.2, 0.2), the 

Lyapunov exponents of the new jerk system (4) are determined using Wolf’s algorithm as 

LE1  0.1680, LE2  0, LE3  2.6705 

 
(9) 

The jerk system (4) is chaotic since LE1  0.1680  0. Thus, the system (4) exhibits a self-excited 

strange chaotic attractor. Also, we note that the sum of the Lyapunov exponents in (9) is negative. This 
shows that the jerk system (4) is dissipative. 
The Kaplan-Yorke dimension of the jerk system (4) is determined as 



 

4 

 

 

 

 

D  2  
LE1  LE2  2.0629, (10) 

| LE3 | 

which indicates the high complexity of the chaotic jerk system (4). 
Figure 2 shows the Lyapunov exponents of the new chaotic jerk system (4) with self-excited, strange 
chaotic attractor. 

Figure 2. Lyapunov exponents of the new chaotic jerk system (4) for (a,b)  (2, 0.2) 

3. Bifurcation Analysis for the New Chaotic Jerk System 
In this section, we describe a bifurcation analysis for the new chaotic jerk system (4) introduced in 
Section 2. Bifurcation analysis is an important topic for understanding chaotic systems [18-22]. 

Some sample results are plotted to verify the reversed period-doubling route to chaos in Figure 3. 

 
(a) a  3, period-1 (b) a  2.86, period-2 

(c) a  2.85, period-4 (d) a  2.8, chaos 

 
(e) a  2.7, chaos (f) a  2.58, period-3 

 

Figure 3. Some sample plots of the jerk system (4) for different values of a when we fix b  0.2 

KY 
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Next, we fix b  0.2, the initial state as X (0)  (0.2, 0.2, 0.2) and vary a in [2,3]. 

From the bifurcation diagram given in Figure 4, we see that new chaotic jerk system (4) exhibits 
chaos, period, reversed period-doubling route, as well as several periodic windows. Note that there is a 
large period-3 periodic window. 

 

Figure 4. Bifurcation diagram and Lyapunov exponents for the new chaotic jerk 

system (4) when we fix b  0.2 and vary a in the interval [2,3] 

Next,   we   fix a  2, initial   state   as X (0)  (0.2, 0.2, 0.2) and vary b in [0.2, 0.45]. The 

corresponding bifurcation diagram and Lyapunov exponents for the new chaotic jerk system (4) are 
shown in Figure 5. Obviously, from the bifurcation diagram, one can get that the system shows a 
reversed period-doubling route to chaos in the whole region. Note that there is a large period-3 
periodic window. 

Figure 5. Bifurcation diagram and Lyapunov exponents for the new chaotic jerk 

system (4) when we fix a  2 and vary b in the interval [0.2, 0.45] 

Next, we describe our results for coexisting attractors. We note that the blue color denotes the 

trajectory of the new chaotic jerk system (4) starting from X0  (0.2, 0.2, 0.2) and the red color 

denotes the trajectory of the new chaotic jerk system (4) starting from Y0  (0.2, 0.2, 0.2). 

We fix b  0.2 and vary a in the interval [2,3]. As can be seen from the bifurcation diagram given in 

Figure 6, there exists coexisting attractors in the region of [2.75, 2.9]. 

Figure 6. Bifurcation diagram for the new chaotic jerk system 

(4) when we fix b  0.2 and vary a in the interval [2,3]. 
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x1  x2 


x   x  2 3 

 y1  y2 
 

y  y  2 3 

ea     A(t) 

eb   B(t) 

 3 1 3 1     3 1    3 1   2 1   2 1 1 

 

 

 
 

 

 

 

 

 

 

 

 

(a) a  2.8,b  0.2 (b) a  2.86,b  0.2 
 

Figure 7. (a) When a  2.8, coexisting chaotic attractors, and (b) when a  2.86, 

coexisting period-2 attractors for the new chaotic jerk system (4). We fix b  0.2. 
 

4. Backstepping-Based Global Chaos Synchronization of the Chaotic Jerk Systems 
In this section, we use backstepping control method to achieve global chaos synchronization of the 
new chaotic jerk systems. 
As the master system for the synchronization, we consider the new chaotic jerk system 

 

 
x  x  ax  bx2 x  x x2  x3 

(11) 

 
In (11), 

 3 1 3 1    3 1   2 1 

x1, x2 , x3 are the states and a, b are unknown state parameters. 

As the slave system for the synchronization, we consider the new chaotic jerk system 

(12) 
 

y   y  ay  by2 y  y y2  y3  u 
 

 3 1 3 1    3 1   2 1 

In (12), y1, y2 , y3 are the states and u is a backstepping control to be designed. 

The synchronization error between the jerk systems (11) and (12) can be classified as follows: 

e1  y1  x1, e2  y2  x2 , e3  y3  x3 (13) 

We find the error dynamics as follows: 

 


e  e  ae   b( y2 y   x2 x )  y y2  x x2  y3  x3  u 

 

(14) 

We denote A(t), B(t) as estimates for the unknown parameters a, b, respectively. 

The error between the parameters and their estimates is defined as follows: 

ea (t)  a  A(t), 

It is easy to see that 



eb (t)  b  B(t) (15) 

 
(16) 

 

Using adaptive backstepping control, we establish a key result of this section. 

Theorem 1. The master and slave chaotic jerk systems represented by (11) and (12) with unknown 

parameters a and b are globally and exponentially synchronized by means of the adaptive 

backstepping controller using estimates A(t) and B(t) given by 

u  2e  5e  3  A(t)e  B(t)  y2 y   x2 x   y y2  x x2  y3  x3  K (17) 
1 2 3 1    3 1    3 1   2 1   2 1 1 3 

 

where K  0 is a gain constant, 

e1  e2 


e   e  2 3 
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 3       1    3 1    3 

1 1 1 

a b 1 2 3 a b 

a 3 b 1    3 1    3 3 

1 2 3 a 3  3 b 3 1    3 1   3 

 

 

3  2e1  2e2  e3 

and the update law for the estimates 

 A  3e3    

 

A(t), B(t) is given by 

(18) 

 
 

(19) 

B     y2 y   x2 x  

Proof. The result is proved via backstepping control method, which is a recursive procedure in 
Lyapunov stability theory. We start with the Lyapunov function 

V ( )  0.5  2 

where 1  e1. 

Differentiating V1 along the error dynamics (14), we get 

(20) 

V     e e  e2  e e  e  (21) 
1 1   1 1  2 1 1 1 2 

We define 

2  e1  e2 

Using Eq. (22), we can simplify Eq. (21) as 
 

2 

Next, we define the Lyapunov function 

(22) 

 
(23) 

V  ,   V ( )  0.5 2 
 0.5 2 

 2  (24) 
2 1 2 1 1 2 1 2 

Differentiating V2 along the error dynamics (14), we get 

V   2  2  2e  2e  e  (25) 
2 1 2 2 1 2 3 

We define 

3  2e1  2e2  e3 

Using (26), we can express (25) as 

(26) 

V   2 
 2 

  (27) 
2 1 2 2    3 

To simplify the notation, we set   (1,2,3). 

Finally, we define the quadratic Lyapunov function 

V ( , e , e )  0.5 2 
 2 

 2   0.5e2  e2 






(28) 

It is evident that V is a positive definite function on R5. 

Differentiating V along the error dynamics (14) and (16), we get 

 
 

(29) 

where 

T  3 2 3  3 2  2e1  2e2  e3 


(30) 

A simple calculation shows that 

T  2e  5e   (3  a)e   b  y2 y   x2x  y y2  x x2  y3  x3  u (31) 
1 2 3 1    3 1    3 1   2 1   2 1 1 

Substituting the value of u from Eq. (17) into Eq. (31), we obtain 

T  [a  A(t)]e [b  B(t)] y2 y   x2x   K (32) 
3 1    3 1    3 3 

We can simplify Eq. (32) by using the definitions given in Eq. (15) as follows: 

T  e e  e  y2 y  x2x   K (33) 

Substituting the value of T from Eq. (33) into Eq. (29), we get 

V   2  2  (1 K) 2  e  ( e   A)  e    y
2 y  x2 x   B (34) 

Implementing the parameter update law (19) into Eq. (34), we get 

V    2 

1 1 1 

V         T  e A  e B 
2 2 2 

1 2 3 3 a b 
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1 2 3 

 

 

V   2 
 2 

 (1 K) 2 

which is a negative semi-definite function on R5. 

Thus, by Barbalat’s lemma [23] in Lyapunov stability theory, we conclude that 

exponentially as t  . Hence, it follows that e(t)  0 as t  . 

This completes the proof. 

For numerical plots, we take the constants (a, b) as in the chaotic case, viz. (a,b)  (2, 0.2). 

(35) 

 
 (t)  0 

We take the gain as K  10. 
The initial conditions of the master jerk system (11) are picked as 

x1(0)  2.6, x2 (0)  0.3, x3(0) 1.2 (36) 

The initial conditions of the slave jerk system (12) are taken as 

y1(0)  1.7, y2 (0)  3.8, y3(0)  4.9 (37) 

The initial conditions of the parameter estimates are taken as 

A(0)  2.8, B(0)  7.4 

Figure 8 shows the global chaos synchronization of the chaotic jerk systems (11) and (12). 

 
(38) 

 

 

 
 

Figure 8 Synchronization of the chaotic jerk systems (11) and (12) 

5. Circuit Implementation of the New Chaotic Jerk System 
In this work, we describe a realization of theoretical jerk model (4) by using electronic components. 
As shown in Figure 9, the circuit includes three op-amp integrator circuits based on three operational 
amplifiers (U1A, U2A, U3A), three inverting amplifiers (U5A, U6A, U7A) which are implemented 
with the operational amplifier TL082CD and five multipliers by using AD633JN. 
The circuital equations of the designed jerk circuit are given by 
 1 

x1  
C R   

x2 (39) 
 1    1 

 1 

x2  
C  R   

x3 

 2     2 
 1 1 

 
1 2 1 

 
2 1 3 

x3    
C  R   

x1  
C  R

 
x3  

100C R 
x1   x3  

100C R x1 x2  x1 100C R 
 3    3 3     4 3    5 3    6 3    7 
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where x , y , and z are the voltages across the capacitors C1, C2 and C3, respectively. Equations (39) 

match Eqs. (1) when the circuit components are selected as follows: R4 = 50 kfi, R5 = 5 kfi, R6 = R7 = 

1 kfi, R1 = R2 = R3 = R8 = R9 = R10 = R11 = R12 = R13 = 100 kfi, C1 = C2 = C3 = 1 nF. MultiSIM phase 
portraits of the circuit are represented in Figure 10. Once more a very good qualitative agreement can 
be observed between numerical simulations (see Figure 1) and MultiSIM results (see Figure 10). 

 
Figure 9. The electronic circuit schematic of new chaotic jerk system 
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(a) 

 

(b) (c) 
 

Figure 10. MultiSIM chaotic attractors of the new chaotic jerk system (4) 

(a) x1- x2 plane (b) x2- x3 plane and (c) x1-x3 plane. 
 

6. Conclusions 
A new chaotic jerk system with three cubic nonlinearities is proposed in this paper. The dynamical 
properties of the new jerk system are described in terms of phase portraits, Lyapunov exponents, 
Kaplan-Yorke dimension, symmetry, dissipativity, etc. Also, a detailed dynamical analysis of the jerk 
system was done using bifurcation diagram and Lyapunov exponents, and we exhibited coexisting 
chaotic attractors for the new jerk system. The adaptive backstepping-based synchronization of the 
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new chaotic jerk system with itself was designed. Furthermore, an electronic circuit realization of the 
new jerk system was shown to confirm the feasibility of the jerk system. 
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Abstract. A 3-D new chaotic jerk system with three cubic nonlinearities is proposed in this 
paper. The dynamical properties of the new jerk system are described in terms of phase 
portraits, Lyapunov exponents, Kaplan-Yorke dimension, symmetry, dissipativity, etc. Also, a 
detailed dynamical analysis of the jerk system has been carried out with bifurcation diagram 
and Lyapunov exponents. As an engineering application, adaptive synchronization of the new 
chaotic jerk system with itself is designed via backstepping control method.  Furthermore, an 
electronic circuit realization of the new chaotic jerk system is presented in detail to confirm the 
feasibility of the theoretical chaotic jerk model. 

1.  Introduction 
Chaos theory deals with chaotic systems which are nonlinear dynamical systems exhibiting high 
sensitivity to small changes in initial conditions [1-2]. Chaotic systems are very useful in many 
applications in science and engineering such as temperature model [3], biology [4], physics [5], 
cellular neural networks [6], satellite [7], robotics [8], encryption [9], finance systems [10], circuits 
[11-12], etc. 
In physics, a jerk ODE can be written as the third order dynamics 

  
3 2

3 2
, ,

d x dx d x
x

dt dt dt

 

  
 

        (1) 

In (1), ( )x t stands for the displacement, 
dx

dt
the velocity, 

2

2

d x

dt
the acceleration and 

3

3

d x

dt
the jerk. 

Thus, we call the ODE (1) as the jerk differential equation. 
For qualitative analysis, it is convenient to express the third-order ODE (1) in a system form. This is 
achieved by defining the following phase variables: 

mailto:sundarvtu@gmail.com
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1

2

3

( ) ( )

( ) ( )

( ) ( )

x t x t

x t x t

x t x t





 

        (2) 

Thus, the phase variables in (2) can be viewed as the displacement, velocity and acceleration, 
respectively. Using them, we can express the jerk differential equation (1) as follows: 

1 2

2 3

3 1 2 3( , , )

x x

x x

x x x x





 

        (3) 

Many jerk systems have been found in the chaos literature [13-17]. Jerk systems have important 
applications in mechanical engineering [1-2]. Some famous jerk systems are Sprott systems [13], Li 
system [14], Elsonbaty system [15], Coullet system [16], Vaidyanathan systems [17], etc. 

In this research paper, we report the finding of a new chaotic jerk system with three cubic 
nonlinearities. We describe the phase plots of the jerk system and do a rigorous dynamic analysis by 
finding bifurcation diagrams, Lyapunov exponents, Kaplan-Yorke dimension, symmetry analysis, etc.  

As a control application, we derive new results for the adaptive synchronization of the new chaotic 
jerk system with itself with unknown parameters. Synchronization of chaotic systems deals with the 
control problem of finding suitable feedback control laws so as to asymptotically synchronize the 
respective trajectories of a pair of chaotic systems called as master and slave systems. We use 
backstepping control method for achieving global chaos synchronization of the new chaotic jerk 
system with itself. Backstepping control method is a recursive procedure used for stabilizing nonlinear 
dynamical systems. 

Section 2 describes the new chaotic jerk system, its phase plots and Lyapunov exponents. Section 3 
describes the dynamic analysis of the new chaotic jerk system. Section 4 describes the backstepping-
based adaptive synchronization of the new chaotic jerk system with itself.  Furthermore, an electronic 
circuit realization of the new chaotic system is presented in detail in Section 5. The circuit 
experimental results of the new chaotic jerk system in Section 5 agreement with the numerical 
simulations via MATLAB obtained in Section 2. Section 6 contains the main conclusions. 

2.  A new chaotic jerk system with three cubic nonlinearities 
In this work, we report a new 3-D chaotic jerk system given by the dynamics 

1 2

2 3

2 2 3

3 1 3 1 3 1 2 1

x x

x x

x x ax bx x x x x

 





     

      (4) 

where 1 2 3, ,x x x are state variables and ,a b are positive constants.  

In this paper, we show that the jerk system (1) is chaotic for the parameter values 

  2,   0.2a b          (5) 

For numerical simulations, we take the initial values of the jerk system (4) as (0) (0.2,0.2,0.2).X   

Figure 1 shows the phase portraits of the strange attractor of the new chaotic jerk system (4) for 

( , ) (2,0.2)a b  and initial conditions (0) (0.2,0.2,0.2).X   Figure 1 (a) shows the 3-D phase 

portrait of the new chaotic jerk system (4). Figures 1 (b)-(c) show the projections of the new chaotic 

system (4) in  1 2, ,x x   2 3,x x and  1 3,x x coordinate planes, respectively. 
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Figure 1. Plots of the chaotic jerk system (4) for ( , ) (2,0.2)a b  and (0) (0.2,0.2,0.2)X   

For the rest of this section, we take the values of the parameters a and b  as in the chaotic case (5), i.e. 

( , ) (2,0.2)a b    

The equilibrium points of the new chaotic jerk system (4) are obtained by solving the system of 
equations 

    2 0x        (6a) 

        3 0x        (6b) 

             
2 2 3

1 3 1 3 1 2 1 0x ax bx x x x x            (6c) 

From (6a) and (6b), we deduce that 2 3 0.x x   

Substituting these in (6c), we obtain  2

1 11 0.x x   This gives 1 0.x   

Hence, 0 (0,0,0)E  is the unique equilibrium of the chaotic jerk system (4).  

The Jacobian matrix of the new jerk system (4) at 0 (0,0,0)E   is obtained as 

0 1 0

0 0 1

1 0 2

J

 
 


 
   

        (7) 

The Jacobian matrix J has the spectral values 2.2056, 0.1028 0.6655 .i  

This shows that the equilibrium point 0E is a saddle-focus and unstable. 

We note that the new chaotic system (4) is invariant under the coordinates transformation  

   1 2 3 1 2 3, , , ,x x x x x x         (8) 

for all values of the parameters. This shows that the new chaotic system (4) has point-reflection 

symmetry about the equilibrium 0 (0,0,0).E   

For the parameter values as in the chaotic case (5) and the initial state (0) (0.2,0.2,0.2),X     the 

Lyapunov exponents of the new jerk system (4) are determined using Wolf’s algorithm as 

 1 2 30.1680,  0,  2.6705LE LE LE         (9) 

The jerk system (4) is chaotic since  1 0.1680 0.LE   Thus, the system (4) exhibits a self-excited 

strange chaotic attractor. Also, we note that the sum of the Lyapunov exponents in (9) is negative. This 
shows that the jerk system (4) is dissipative. 
The Kaplan-Yorke dimension of the jerk system (4) is determined as 
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 1 2

3

2 2.0629,
| |

KY

LE LE
D

LE


          (10) 

which indicates the high complexity of the chaotic jerk system (4). 
Figure 2 shows the Lyapunov exponents of the new chaotic jerk system (4) with self-excited, strange 
chaotic attractor.  

 
Figure 2. Lyapunov exponents of the new chaotic jerk system (4) for  ( , ) (2,0.2)a b   

3.  Bifurcation Analysis for the New Chaotic Jerk System 
In this section, we describe a bifurcation analysis for the new chaotic jerk system (4) introduced in 
Section 2. Bifurcation analysis is an important topic for understanding chaotic systems  [18-22]. 

 Some sample results are plotted to verify the reversed period-doubling route to chaos in Figure 3. 

 
              (a) 3,a  period-1          (b) 2.86,a  period-2 

 
   (c) 2.85,a  period-4  (d) 2.8,a  chaos 

 
                          (e) 2.7,a  chaos                                              (f) 2.58,a  period-3 

 

Figure 3. Some sample plots of the jerk system (4) for different values of a when we fix 0.2b   
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Next, we fix 0.2,b  the initial state as (0) (0.2,0.2,0.2)X  and vary a in [2,3].  

From the bifurcation diagram given in Figure 4, we see that new chaotic jerk system (4) exhibits 
chaos, period, reversed period-doubling route, as well as several periodic windows. Note that there is a 
large period-3 periodic window. 

 
Figure 4. Bifurcation diagram and Lyapunov exponents for the new chaotic jerk 

system (4) when we fix 0.2b  and vary a in the interval [2,3]  

Next, we fix 2,a  initial state as (0) (0.2,0.2,0.2)X  and vary b in [0.2,0.45].  The 

corresponding bifurcation diagram and Lyapunov exponents for the new chaotic jerk system (4) are 
shown in Figure 5. Obviously, from the bifurcation diagram, one can get that the system shows a 
reversed period-doubling route to chaos in the whole region. Note that there is a large period-3  
periodic window. 

 
Figure 5. Bifurcation diagram and Lyapunov exponents for the new chaotic jerk 

system (4) when we fix 2a  and vary b  in the interval  [0.2,0.45]  

Next, we describe our results for coexisting attractors. We note that the blue color denotes the 

trajectory of the new chaotic jerk system (4) starting from 0 (0.2,0.2,0.2)X  and the red color 

denotes the trajectory of the new chaotic jerk system (4) starting from 0 ( 0.2, 0.2, 0.2).Y      

We fix 0.2b  and vary a in the interval [2,3].  As can be seen from the bifurcation diagram given in 

Figure 6,  there exists coexisting attractors in the region of  [2.75,2.9].  

  
 Figure 6. Bifurcation diagram for the new chaotic jerk system 

(4) when we fix 0.2b  and vary   a in the interval [2,3].  
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                                   (a) 2.8, 0.2a b                      (b) 2.86, 0.2a b   

  

Figure 7. (a) When 2.8,a  coexisting chaotic attractors, and (b) when  2.86,a 

coexisting period-2 attractors for the new chaotic jerk system (4). We fix 0.2.b   

4.  Backstepping-Based Global Chaos Synchronization of the Chaotic Jerk Systems 
In this section, we use backstepping control method to achieve global chaos synchronization of the 
new chaotic jerk systems.    
As the master system for the synchronization, we consider the new chaotic jerk system 

1 2

2 3

2 2 3

3 1 3 1 3 1 2 1

x x

x x

x x ax bx x x x x

 





     

      (11) 

In (11), 1 2 3, ,x x x are the states and ,a b are unknown state parameters. 

As the slave system for the synchronization, we consider the new chaotic jerk system  

  
1 2

2 3

2 2 3

3 1 3 1 3 1 2 1

y y

y y

y y ay by y y y y u

 





      

      (12) 

In (12), 1 2 3, ,y y y are the states and u is a backstepping control to be designed.  

The synchronization error between the jerk systems (11) and (12) can be classified as follows: 

 1 1 1 2 2 2 3 3 3,   ,   e y x e y x e y x           (13) 

We find the error dynamics as follows: 

  1 2

2 3

2 2 2 2 3 3

3 1 3 1 3 1 3 1 2 1 2 1 1( )

e e

e e

e e ae b y y x x y y x x y x u

 





         

     (14) 

We denote ( ), ( )A t B t as estimates for the unknown parameters , ,a b respectively. 

The error between the parameters and their estimates is defined as follows: 

 ( ) ( ),   ( ) ( )a be t a A t e t b B t          (15)  

It is easy to see that 

 ( )

( )

a

b

e A t

e B t

  


 

        (16) 

Using adaptive backstepping control, we establish a key result of this section. 

Theorem 1. The master and slave chaotic jerk systems represented by (11) and (12) with unknown 

parameters a and b are globally and exponentially synchronized by means of the adaptive 

backstepping controller using estimates ( )A t and ( )B t given by  

          2 2 2 2 3 3

1 2 3 1 3 1 3 1 2 1 2 1 1 32 5 3 ( ) ( )u e e A t e B t y y x x y y x x y x K               (17)  

 

where 0K  is a gain constant, 
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 3 1 2 32 2e e e           (18) 

and the update law for the estimates ( ), ( )A t B t is given by 

   

 
3 3

2 2

3 1 3 1 3

A e

B y y x x





  


  

       (19) 

Proof. The result is proved via backstepping control method, which is a recursive procedure in 
Lyapunov stability theory. We start with the Lyapunov function 

 
2

1 1 1( ) 0.5 V           (20) 

where 1 1.e   

Differentiating 1V along the error dynamics (14), we get 

  2

1 1 1 1 2 1 1 1 2V e e e e e e             (21) 

We define 

  2 1 2e e           (22) 

Using Eq. (22), we can simplify Eq. (21) as 

 
2

1 1 1 2V              (23) 

Next, we define the Lyapunov function 

     2 2 2

2 1 2 1 1 2 1 2, ( ) 0.5 0.5V V              (24) 

Differentiating 2V along the error dynamics (14), we get 

  2 2

2 1 2 2 1 2 32 2V e e e              (25) 

We define 

 3 1 2 32 2e e e           (26) 

Using (26), we can express (25) as 

 
2 2

2 1 2 2 3V               (27) 

To simplify the notation, we set 1 2 3( , , ).     

Finally, we define the quadratic Lyapunov function 

   2 2 2 2 2

1 2 3( , , ) 0.5 0.5a b a bV e e e e            (28) 

It is evident that V is a positive definite function on 
5.R  

Differentiating V along the error dynamics (14) and (16), we get  

  
2 2 2

1 2 3 3 a bV T e A e B               (29) 

where 

   3 2 3 3 2 1 2 32 2T e e e                 (30) 

A simple calculation shows that 

 2 2 2 2 3 3

1 2 3 1 3 1 3 1 2 1 2 1 12 5 (3 )T e e a e b y y x x y y x x y x u             (31) 

Substituting the value of u from Eq. (17) into Eq. (31), we obtain 

  2 2

3 1 3 1 3 3[ ( )] [ ( )]T a A t e b B t y y x x K           (32) 

We can simplify Eq. (32) by using the definitions given in Eq. (15) as follows: 

   2 2

3 1 3 1 3 3a bT e e e y y x x K           (33) 

Substituting the value of T from Eq. (33) into Eq. (29), we get 

   2 2 2 2 2

1 2 3 3 3 3 1 3 1 3(1 ) ( )a bV K e e A e y y x x B                
 

  (34) 

Implementing the parameter update law (19) into Eq. (34), we get 
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2 2 2

1 2 3(1 )V K              (35) 

which is a negative semi-definite function on 
5.R  

Thus, by Barbalat’s lemma [23] in Lyapunov stability theory, we conclude that ( ) 0t 

exponentially as .t   Hence, it follows that ( ) 0e t  as .t   

This completes the proof. 

For numerical plots, we take the constants ( , )a b as in the chaotic case, viz. ( , ) (2,0.2).a b   

We take the gain as 10.K   

The initial conditions of the master jerk system (11) are picked as  

1 2 3(0) 2.6,   (0) 0.3,   (0) 1.2x x x        (36) 

The initial conditions of the slave jerk system (12) are taken as  

1 2 3(0) 1.7,   (0) 3.8,   (0) 4.9y y y        (37) 

The initial conditions of the parameter estimates are taken as 

(0) 2.8,  (0) 7.4A B         (38) 

Figure 8 shows the global chaos synchronization of the chaotic jerk systems (11) and (12).  
        

 
 Figure 8 Synchronization of the chaotic jerk systems (11) and (12)  

5.  Circuit Implementation of the New Chaotic Jerk System 
In this work, we describe a realization of theoretical jerk model (4) by using electronic components. 
As shown in Figure 9, the circuit includes three op-amp integrator circuits based on three operational 
amplifiers (U1A, U2A, U3A), three inverting amplifiers (U5A, U6A, U7A) which are implemented 
with the operational amplifier TL082CD and five multipliers by using AD633JN. 
The circuital equations of the designed jerk circuit are given by  





















3

1

73

2

21

63

3

2

1

53

3

43

1

33

3

3

22

2

2

11

1

100

1

100

1

100

111

1

1

x
RC

xx
RC

xx
RC

x
RC

x
RC

x

x
RC

x

x
RC

x






      (39) 
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where x , y , and z are the voltages across the capacitors C1, C2 and C3, respectively. Equations (39) 

match Eqs. (1) when the circuit components are selected as follows: R4  = 50 kfi,  R5 = 5 kfi, R6 = R7 = 

1 kfi, R1 = R2 = R3 = R8 = R9 = R10 = R11 = R12 = R13 = 100 kfi, C1 = C2 = C3 = 1 nF. MultiSIM  phase 
portraits of the circuit are represented in Figure 10. Once more a very good qualitative agreement can 
be observed between numerical simulations (see Figure 1) and MultiSIM results (see Figure 10). 

 

 

 
Figure 9. The electronic circuit schematic of new chaotic jerk system  
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(a) 

 

 
                                 (b)                                                                         (c) 

 

Figure 10. MultiSIM chaotic attractors of the new chaotic jerk system (4) 

 (a) x1- x2 plane (b) x2- x3 plane and (c) x1-x3 plane. 

6.  Conclusions 

A new chaotic jerk system with three cubic nonlinearities is proposed in this paper. The dynamical 
properties of the new jerk system are described in terms of phase portraits, Lyapunov exponents, 
Kaplan-Yorke dimension, symmetry, dissipativity, etc. Also, a detailed dynamical analysis of the jerk 
system was done using bifurcation diagram and Lyapunov exponents, and we exhibited coexisting 
chaotic attractors for the new jerk system. The adaptive backstepping-based synchronization of the 
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new chaotic jerk system with itself was designed.  Furthermore, an electronic circuit realization of the 
new jerk system was shown to confirm the feasibility of the jerk system.  
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