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Abstract
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detailed dynamical analysis of the jerk system has been carried out with bifurcation diagram
and Lyapunov exponents. As an engineering application, adaptive synchronization of the new
chaotic jerk system with itself is designed via backstepping control method. Furthermore, an
electronic circuit realization of the new chactic jerk system is presented in detail to confirm the
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Abstract. A 3-D new chaotic jerk system with three cubic nonlinearities is proposed in this paper. The dynamical
properties of the new jerk system are described in terms of phaseportraits, Lyapunov exponents, Kaplan-
Yorke dimension, symmetry, dissipativity, etc. Also, a detailed dynamical analysis of the jerk system has been
carried out with bifurcation diagram and Lyapunov exponents. As an engineering application, adaptive
synchronization of the new chaotic jerk system with itself is designed via backstepping control method.
Furthermore, an electronic circuit realization of the new chaotic jerk system is presented in detail to confirm the
feasibility of the theoretical chaotic jerk model.

1. Introduction
Chaos theory deals with chaotic systems which are nonlinear dynamical systems exhibiting high
sensitivity to small changes in initial conditions [1-2]. Chaotic systems are very useful in many
applications in science and engineering such as temperature model [3], biology [4], physics [5],
cellular neural networks [6], satellite [7], robotics [8], encryption [9], finance systems [10], circuits
[11-12], etc.
In physics, a jerk ODE can be written as the third order dynamics

d* _ ( dx d%) (1)

-dts—_(P| N

1 r2
\ dt dt )
dx d?x d3x

In (1), x(t)stands for the displacement, Ethe velocity, Fthe acceleration and Fthejerk.
Thus, we call the ODE (1) as the jerk differential equation.

For qualitative analysis, it is convenient to express the third-order ODE (1) in a system form. This is
achieved by defining the following phase variables:
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X1(t) = x(t)
X, (t) = X(t) )

X, (1) = ()
Thus, the phase variables in (2) can be viewed as the displacement, velocity and acceleration,
respectively. Using them, we can express the jerk differential equation (1) as follows:

j)(ll = X2

_ 3
X 2o x ) ©

L 3 1 2 3

Many jerk systems have been found in the chaos literature [13-17]. Jerk systems have important
applications in mechanical engineering [1-2]. Some famous jerk systems are Sprott systems [13], Li
system [14], Elsonbaty system [15], Coullet system [16], Vaidyanathan systems [17], etc.

In this research paper, we report the finding of a new chaotic jerk system with three cubic
nonlinearities. We describe the phase plots of the jerk system and do a rigorous dynamic analysis by
finding bifurcation diagrams, Lyapunov exponents, Kaplan-Yorke dimension, symmetry analysis, etc.

As a control application, we derive new results for the adaptive synchronization of the new chaotic
jerk system with itself with unknown parameters. Synchronization of chaotic systems deals with the
control problem of finding suitable feedback control laws so as to asymptotically synchronize the
respective trajectories of a pair of chaotic systems called as master and slave systems. We use
backstepping control method for achieving global chaos synchronization of the new chaotic jerk
system with itself. Backstepping control method is a recursive procedure used for stabilizing nonlinear
dynamical systems.

Section 2 describes the new chaotic jerk system, its phase plots and Lyapunov exponents. Section 3
describes the dynamic analysis of the new chaotic jerk system. Section 4 describes the backstepping-
based adaptive synchronization of the new chaotic jerk system with itself. Furthermore, an electronic
circuit realization of the new chaotic system is presented in detail in Section 5. The circuit
experimental results of the new chaotic jerk system in Section 5 agreement with the numerical
simulations via MATLAB obtained in Section 2. Section 6 contains the main conclusions.

2. A new chaotic jerk system with three cubic nonlinearities
In this work, we report a new 3-D chaotic jerk system given by the dynamics

J o @

L§'2 25 “ax —bx 4xx—xX
where Xy, X,, X;are state variables and a, b are positive constants.
In this paper, we show that the jerk system (1) is chaotic for the parameter values

a=2, b=0.2 (5)
For numerical simulations, we take the initial values of the jerk system (4) as X (0) =(0.2,0.2,0.2).
Figure 1 shows the phase portraits of the strange attractor of the new chaotic jerk system (4) for
(a,b) =(2,0.2) and initial conditions X (0)=(0.2,0.2,0.2). Figure 1 (a) shows the 3-D phase
portrait of the new chaotic jerk system (4). Figures 1 (b)-(c) show the projections of the new chaotic
system (4) in (X, X, ), (X,,X%;)and (X, X, ) coordinate planes, respectively.



(a) (b}

Figure 1. Plots of the chaotic jerk system (4) for (a,b) =(2,0.2) and X (0) =(0.2,0.2,0.2)
For the rest of this section, we take the values of the parameters aand b as in the chaotic case (5), i.e.
(a,b)=(2,0.2)
The equilibrium points of the new chaotic jerk system (4) are obtained by solving the system of
equations

X, =0 (6b)
—x —ax —bx® +xx2-x3=0 (6¢)
1 3 1 3 12 1

From (6a) and (6b), we deduce that X, = X;=0.

Substituting these in (6c), we obtain —X l(1+ le) = 0. This gives X, =0.
Hence, Eo =(0,0,0)is the unique equilibrium of the chaotic jerk system (4).
The Jacobian matrix of the new jerk system (4) at Eo =(0,0,0) is obtained as

01 0
JJO 0 1] (7

|-1 0 2]

The Jacobian matrix J has the spectral values —2.2056, 0.1028 +0.6655i.
This shows that the equilibrium point Ep is a saddle-focus and unstable.
We note that the new chaotic system (4) is invariant under the coordinates transformation

(X1, X2, X3) = (—X1, —X2, —X3) (8)
for all values of the parameters. This shows that the new chaotic system (4) has point-reflection
symmetry about the equilibrium Eo = (0,0,0).
For the parameter values as in the chaotic case (5) and the initial state X (0) =(0.2,0.2,0.2), the
Lyapunov exponents of the new jerk system (4) are determined using Wolf’s algorithm as

LE,=0.1680, LE,=0, LE; =-2.6705 )
The jerk system (4) is chaotic since LE; =0.1680 > 0. Thus, the system (4) exhibits a self-excited

strange chaotic attractor. Also, we note that the sum of the Lyapunov exponents in (9) is negative. This
shows that the jerk system (4) is dissipative.
The Kaplan-Yorke dimension of the jerk system (4) is determined as



L LE+LE,

D =2 —2.0629, (10)

KY
|LE; ]

which indicates the high complexity of the chaotic jerk system (4).

Figure 2 shows the Lyapunov exponents of the new chaotic jerk system (4) with self-excited, strange

chaotic attractor.
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Figure 2. Lyapunov exponents of the new chaotic jerk system (4) for (a,b) =(2,0.2)

3. Bifurcation Analysis for the New Chaotic Jerk System
In this section, we describe a bifurcation analysis for the new chaotic jerk system (4) introduced in
Section 2. Bifurcation analysis is an important topic for understanding chaotic systems [18-22].

Some sample results are plotted to verify the reversed period-doubling route to chaos in Figure 3.

| f a /'/";V: " N\
4 S~ f ) v‘:\l\“ j |
(@) a =3, period-1 (b) a =2.86, period-2
6 6

5

(e) a=2.7, chaos (f) a=2.58, period-3

Figure 3. Some sample plots of the jerk system (4) for different values of a when we fix b=0.2



Next, we fix b =0.2,the initial state as X (0) =(0.2,0.2,0.2) and vary ain [2,3].

From the bifurcation diagram given in Figure 4, we see that new chaotic jerk system (4) exhibits
chaos, period, reversed period-doubling route, as well as several periodic windows. Note that there is a
large period-3 periodic window.
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Figure 4. Bifurcation diagram and Lyapunov exponents for the new chaotic jerk
system (4) when we fix b =0.2and vary ain the interval [2,3]

Next, we fix a=2,initial state as X(0)=(0.2,0.2,0.2)and vary bin [0.2,0.45]. The
corresponding bifurcation diagram and Lyapunov exponents for the new chaotic jerk system (4) are
shown in Figure 5. Obviously, from the bifurcation diagram, one can get that the system shows a
reversed period-doubling route to chaos in the whole region. Note that there is a large period-3
periodic window.
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Figure 5. Bifurcation diagram and Lyapunov exponents for the new chaotic jerk

system (4) when we fix a=2and vary b inthe interval [0.2,0.45]
Next, we describe our results for coexisting attractors. We note that the blue color denotes the
trajectory of the new chaotic jerk system (4) starting from Xo =(0.2,0.2,0.2)and the red color

denotes the trajectory of the new chaotic jerk system (4) starting from Yo =(—0.2,-0.2,-0.2).

We fix b=0.2and vary a in the interval [2,3]. As can be seen from the bifurcation diagram given in
Figure 6, there exists coexisting attractors in the region of [2.75,2.9].

6

1 2.2 24 26 28 3

Figure 6. Bifurcation diagrarr: for the new chaotic jerk system
(4) when we fix b=0.2and vary ain the interval [2,3].
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(@) a=2.£3,b=0.2 (b) a=2.86,b=0.2

Figure 7. (a) When a = 2.8, coexisting chaotic attractors, and (b) when a=2.86,
coexisting period-2 attractors for the new chaotic jerk system (4). We fix b =0.2.

4. Backstepping-Based Global Chaos Synchronization of the Chaotic Jerk Systems

In this section, we use backstepping control method to achieve global chaos synchronization of the
new chaotic jerk systems.

As the master system for the synchronization, we consider the new chaotic jerk system

X, =X,
X, =X (11)
X\ =% —ax —bxx +xx2—x3
L 3 1 3 13 12 1
In(11), Xy, X,, X;are the states and a, b are unknown state parameters.
As the slave system for the synchronization, we consider the new chaotic jerk system
yi =Y.
by @2
y=-y —ay —by’y +yy’-y*+u
3 1 3 1 3 12 1

In(12), Y., Y,, Y;are the states and U is a backstepping control to be designed.
The synchronization error between the jerk systems (11) and (12) can be classified as follows:

E1=Y1— Xy €=Y,—Xy, €=Y3—X3 (13)
We find the error dynamics as follows:

6, =g,

Jéz =& (14)

[(:33: — - ae ;—b(y3y ;= X3X ) + Y y5— X ¥ YA+ X3+ u
We denote A(t), B(t) as estimates for the unknown parameters a, b, respectively.
The error between the parameters and their estimates is defined as follows:

e,(t)=a—A(t), e, (t)=b—B(t) (15)

It is easy to see that
{e'a =-A(t) (16)

& =-B()

Using adaptive backstepping control, we establish a key result of this section.
Theorem 1. The master and slave chaotic jerk systems represented by (11) and (12) with unknown
parameters a and b are globally and exponentially synchronized by means of the adaptive
backstepping controller using estimates A(t) and B(t) given by
u=-2e —-5e —[3-A(t)]e + B(t)(yzy - X2 )— yy2+xx2+y —x®—Ko (17)
1 2 3 1 3 1 3 1 2 12 1 1 3

where K > Qis a gain constant,



G3 =26, +2€, +e, (18)
and the update law for the estimates A(t), B(t) is given by
[A=-c.g, (19)
B= —csa(yfy3 —xfxa)

Proof. The result is proved via backstepping control method, which is a recursive procedure in
Lyapunov stability theory. We start with the Lyapunov function

V,(c,)=050; (20)
where 1 = €1.
Differentiating V1 along the error dynamics (14), we get

V =co. =ee =—e’+e (e +e ) (1)
1 11 12 1 1 1 2
We define
Using Eq. (22), we can simplify Eq. (21) as
V,=-62+c6 0o, (23)
Next, we define the Lyapunov function
V (6.6 )=V (c)+0506°=05(c”+c?) (24)
2 1 2 1 1 2 1 2
Differentiating V2 along the error dynamics (14), we get
V =—c’-c’+c (2 +2e +e) (25)
2 1 2 2 1 2 3
We define
Using (26), we can express (25) as
V =—6’-—c’+0 o (27)
2 1 2 2 3

To simplify the notation, we set ¢ = (61,02,03).
Finally, we define the quadratic Lyapunov function

V(c,6s,6) =05(cf +55+0%)+05(es+€) (28)

It is evident that V is a positive definite function on R®.
Differentiating V along the error dynamics (14) and (16), we get

V=-0!-0-62+5,T -e,A-¢B (29)
where

T =03+02 +03 =03 +02 + (261 + 262 +€3) (30)
A simple calculation shows that

T =2e +5e +(3-a)e —b(yzy —x%x )+ yy —xx* -y +x3+u (31)

1 2 3 1 3 1 3 1 2 12 1 1

Substituting the value of u from Eqg. (17) into Eq. (31), we obtain

T =-[a—A(t)]e —[b-B®)]( y2y —x2x)— Ko (32)

3 1 3 1 3

We can simplify Eq. (32) by using the definitions given in Eg. (15) as follows:

T :_eaea_eb(YEYS, —XfX3)— Ko, (33)
Substituting the value of T from Eqg. (33) into Eq. (29), we get

\ =_012 _022 -1+ K)Gg +ea(_63e3 - A)+eb|:_c3(y12y3 —X12X3)— B] (34)

Implementing the parameter update law (19) into Eq. (34), we get



V =-c] -c. - (1+ K)o’ (35)
which is a negative semi-definite function on R>.
Thus, by Barbalat’s lemma [23] in Lyapunov stability theory, we conclude that o(t)—>0
exponentially as t — oco. Hence, it follows that e(t) > 0as t — oo.
This completes the proof.
For numerical plots, we take the constants (a,b)as in the chaotic case, viz. (a,b) = (2,0.2).

We take the gainas K =10.
The initial conditions of the master jerk system (11) are picked as

x1(0) =2.6, x2(0)=0.3, x3(0) =1.2 (36)
The initial conditions of the slave jerk system (12) are taken as

y1(0) =17, y2(0)=3.8, y3(0)=4.9 (37)
The initial conditions of the parameter estimates are taken as

A(0)=2.8, B(0)=7.4 (38)

Figure 8 shows the global chaos synchronization of the chaotic jerk systems (11) and (12).

Xl
.......... v,
5] 8 10
*2
.......... v,
|
B 7 a 9 10
T
Xy
---------- ys
]
-5 1 1 1
4] 1 2 3 =] 7 a =] 10

Time (sec)
Figure 8 Synchronization of the chaotic jerk systems (11) and (12)

5. Circuit Implementation of the New Chaotic Jerk System

In this work, we describe a realization of theoretical jerk model (4) by using electronic components.
As shown in Figure 9, the circuit includes three op-amp integrator circuits based on three operational
amplifiers (U1A, U2A, U3A), three inverting amplifiers (U5A, U6A, U7A) which are implemented
with the operational amplifier TLO82CD and five multipliers by using AD633JN.

'(I'he cilrcuital equations of the designed jerk circuit are given by

X=cR (39)
11
T
% = ——X
CR,”
1 1ox,— 1 xoxg+ 1 2 1 s
\L&:cherR 100C R 100C R XX, —1g9€-R-%:
3



where x , y, and z are the voltages across the capacitors C;, C, and Cs, respectively. Equations (39)
match Egs. (1) when the circuit components are selected as follows: Rs = 50 kfi, Rs =5 kfi, Re = R7 =
1 kﬁ, Ri=R,=R3=Rg=Rg =Ry = Ri1 =R = Ri3 =100 kﬁ, Ci1=C,=Cs3=1nF. MultiSIM phase

portraits of the circuit are represented in Figure 10. Once more a very good gualitative agreement can
be observed between numerical simulations (see Figure 1) and MultiSIM results (see Figure 10).
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Figure 10. MultiSIM chaotic attractors of the new chaotic jerk system (4)
(@) x1- x2 plane (b) x2- X3 plane and (c) xi-xs plane.

6. Conclusions

A new chaotic jerk system with three cubic nonlinearities is proposed in this paper. The dynamical
properties of the new jerk system are described in terms of phase portraits, Lyapunov exponents,
Kaplan-Yorke dimension, symmetry, dissipativity, etc. Also, a detailed dynamical analysis of the jerk
system was done using bifurcation diagram and Lyapunov exponents, and we exhibited coexisting
chaotic attractors for the new jerk system. The adaptive backstepping-based synchronization of the

10




new chaotic jerk system with itself was designed. Furthermore, an electronic circuit realization of the
new jerk system was shown to confirm the feasibility of the jerk system.
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Abstract. A 3-D new chaotic jerk system with three cubic nonlinearities is proposed in this
paper. The dynamical properties of the new jerk system are described in terms of phase
portraits, Lyapunov exponents, Kaplan-Yorke dimension, symmetry, dissipativity, etc. Also, a
detailed dynamical analysis of the jerk system has been carried out with bifurcation diagram
and Lyapunov exponents. As an engineering application, adaptive synchronization of the new
chaotic jerk system with itself is designed via backstepping control method. Furthermore, an
electronic circuit realization of the new chaotic jerk system is presented in detail to confirm the
feasibility of the theoretical chaotic jerk model.

1. Introduction
Chaos theory deals with chaotic systems which are nonlinear dynamical systems exhibiting high
sensitivity to small changes in initial conditions [1-2]. Chaotic systems are very useful in many
applications in science and engineering such as temperature model [3], biology [4], physics [5],
cellular neural networks [6], satellite [7], robotics [8], encryption [9], finance systems [10], circuits
[11-12], etc.
In physics, a jerk ODE can be written as the third order dynamics

d _ ( dx d%) (1)

-d-t3—_(p| N

| ro2
\ dt dt )
dx d?x d3x

In (1), x(t)stands for the displacement, Ethe velocity, Fthe acceleration and Fthejerk.
Thus, we call the ODE (1) as the jerk differential equation.

For qualitative analysis, it is convenient to express the third-order ODE (1) in a system form. This is
achieved by defining the following phase variables:


mailto:sundarvtu@gmail.com
mailto:sundarvtu@gmail.com
mailto:sundarvtu@gmail.com
mailto:sundarvtu@gmail.com

X1(t) = x(t)
X, (t) = X(t) )

X, (1) = ()
Thus, the phase variables in (2) can be viewed as the displacement, velocity and acceleration,
respectively. Using them, we can express the jerk differential equation (1) as follows:

j)(ll = X2

_ 3
X 2o x ) ©

L 3 1 2 3

Many jerk systems have been found in the chaos literature [13-17]. Jerk systems have important
applications in mechanical engineering [1-2]. Some famous jerk systems are Sprott systems [13], Li
system [14], Elsonbaty system [15], Coullet system [16], Vaidyanathan systems [17], etc.

In this research paper, we report the finding of a new chaotic jerk system with three cubic
nonlinearities. We describe the phase plots of the jerk system and do a rigorous dynamic analysis by
finding bifurcation diagrams, Lyapunov exponents, Kaplan-Yorke dimension, symmetry analysis, etc.

As a control application, we derive new results for the adaptive synchronization of the new chaotic
jerk system with itself with unknown parameters. Synchronization of chaotic systems deals with the
control problem of finding suitable feedback control laws so as to asymptotically synchronize the
respective trajectories of a pair of chaotic systems called as master and slave systems. We use
backstepping control method for achieving global chaos synchronization of the new chaotic jerk
system with itself. Backstepping control method is a recursive procedure used for stabilizing nonlinear
dynamical systems.

Section 2 describes the new chaotic jerk system, its phase plots and Lyapunov exponents. Section 3
describes the dynamic analysis of the new chaotic jerk system. Section 4 describes the backstepping-
based adaptive synchronization of the new chaotic jerk system with itself. Furthermore, an electronic
circuit realization of the new chaotic system is presented in detail in Section 5. The circuit
experimental results of the new chaotic jerk system in Section 5 agreement with the numerical
simulations via MATLAB obtained in Section 2. Section 6 contains the main conclusions.

2. A new chaotic jerk system with three cubic nonlinearities
In this work, we report a new 3-D chaotic jerk system given by the dynamics

J o @

L§'2 25 “ax —bx 4xx—xX
where Xy, X,, X;are state variables and a, b are positive constants.
In this paper, we show that the jerk system (1) is chaotic for the parameter values

a=2, b=0.2 (5)
For numerical simulations, we take the initial values of the jerk system (4) as X (0) =(0.2,0.2,0.2).
Figure 1 shows the phase portraits of the strange attractor of the new chaotic jerk system (4) for
(a,b) =(2,0.2) and initial conditions X (0)=(0.2,0.2,0.2). Figure 1 (a) shows the 3-D phase
portrait of the new chaotic jerk system (4). Figures 1 (b)-(c) show the projections of the new chaotic
system (4) in (X, X, ), (X,,X%;)and (X, X, ) coordinate planes, respectively.



(a) (b}

Figure 1. Plots of the chaotic jerk system (4) for (a,b) =(2,0.2) and X (0) =(0.2,0.2,0.2)
For the rest of this section, we take the values of the parameters aand b as in the chaotic case (5), i.e.
(a,b)=(2,0.2)
The equilibrium points of the new chaotic jerk system (4) are obtained by solving the system of
equations

X, =0 (6b)
—x —ax —bx® +xx2-x3=0 (6¢)
1 3 1 3 12 1

From (6a) and (6b), we deduce that X, = X;=0.

Substituting these in (6c), we obtain —X l(1+ le) = 0. This gives X, =0.
Hence, Eo =(0,0,0)is the unique equilibrium of the chaotic jerk system (4).
The Jacobian matrix of the new jerk system (4) at Eo =(0,0,0) is obtained as

01 0
JJO 0 1] (7

|-1 0 2]

The Jacobian matrix J has the spectral values —2.2056, 0.1028 +0.6655i.
This shows that the equilibrium point Ep is a saddle-focus and unstable.
We note that the new chaotic system (4) is invariant under the coordinates transformation

(X1, X2, X3) = (—X1, —X2, —X3) (8)
for all values of the parameters. This shows that the new chaotic system (4) has point-reflection
symmetry about the equilibrium Eo = (0,0,0).
For the parameter values as in the chaotic case (5) and the initial state X (0) =(0.2,0.2,0.2), the
Lyapunov exponents of the new jerk system (4) are determined using Wolf’s algorithm as

LE,=0.1680, LE,=0, LE; =-2.6705 )
The jerk system (4) is chaotic since LE; =0.1680 > 0. Thus, the system (4) exhibits a self-excited

strange chaotic attractor. Also, we note that the sum of the Lyapunov exponents in (9) is negative. This
shows that the jerk system (4) is dissipative.
The Kaplan-Yorke dimension of the jerk system (4) is determined as



L LE+LE,

D =2 —2.0629, (10)

KY
|LE; ]

which indicates the high complexity of the chaotic jerk system (4).

Figure 2 shows the Lyapunov exponents of the new chaotic jerk system (4) with self-excited, strange

chaotic attractor.

n

—LE, = 01880
—LE, =0 ]
——LE, =-26705

Lyapunov exponents
. IR

)
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o

2 4 8 8 10
Time (sec) x10%

Figure 2. Lyapunov exponents of the new chaotic jerk system (4) for (a,b) =(2,0.2)

3. Bifurcation Analysis for the New Chaotic Jerk System
In this section, we describe a bifurcation analysis for the new chaotic jerk system (4) introduced in
Section 2. Bifurcation analysis is an important topic for understanding chaotic systems [18-22].

Some sample results are plotted to verify the reversed period-doubling route to chaos in Figure 3.

| f a /'/";V: " N\
4 S~ f ) v‘:\l\“ j |
(@) a =3, period-1 (b) a =2.86, period-2
6 6

5

(e) a=2.7, chaos (f) a=2.58, period-3

Figure 3. Some sample plots of the jerk system (4) for different values of a when we fix b=0.2



Next, we fix b =0.2,the initial state as X (0) =(0.2,0.2,0.2) and vary ain [2,3].

From the bifurcation diagram given in Figure 4, we see that new chaotic jerk system (4) exhibits
chaos, period, reversed period-doubling route, as well as several periodic windows. Note that there is a
large period-3 periodic window.

6 05 . . . .
% e i . | B e A, e G st 2z e
7 | 0 v

Iyapunov exponents

s g 1 T —LE2
V 3 —LE3
1 3.5
1 L L L |

2 22 24 26 28 3 2 22 24 2.6 28 3
a a

Figure 4. Bifurcation diagram and Lyapunov exponents for the new chaotic jerk
system (4) when we fix b =0.2and vary ain the interval [2,3]

Next, we fix a=2,initial state as X(0)=(0.2,0.2,0.2)and vary bin [0.2,0.45]. The
corresponding bifurcation diagram and Lyapunov exponents for the new chaotic jerk system (4) are
shown in Figure 5. Obviously, from the bifurcation diagram, one can get that the system shows a
reversed period-doubling route to chaos in the whole region. Note that there is a large period-3
periodic window.
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Figure 5. Bifurcation diagram and Lyapunov exponents for the new chaotic jerk

system (4) when we fix a=2and vary b inthe interval [0.2,0.45]
Next, we describe our results for coexisting attractors. We note that the blue color denotes the
trajectory of the new chaotic jerk system (4) starting from Xo =(0.2,0.2,0.2)and the red color

denotes the trajectory of the new chaotic jerk system (4) starting from Yo =(—0.2,-0.2,-0.2).

We fix b=0.2and vary a in the interval [2,3]. As can be seen from the bifurcation diagram given in
Figure 6, there exists coexisting attractors in the region of [2.75,2.9].

6

1 2.2 24 26 28 3

Figure 6. Bifurcation diagrarr: for the new chaotic jerk system
(4) when we fix b=0.2and vary ain the interval [2,3].
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Figure 7. (a) When a = 2.8, coexisting chaotic attractors, and (b) when a=2.86,
coexisting period-2 attractors for the new chaotic jerk system (4). We fix b =0.2.

4. Backstepping-Based Global Chaos Synchronization of the Chaotic Jerk Systems

In this section, we use backstepping control method to achieve global chaos synchronization of the
new chaotic jerk systems.

As the master system for the synchronization, we consider the new chaotic jerk system

X, =X,
X, =X (11)
X\ =% —ax —bxx +xx2—x3
L 3 1 3 13 12 1
In(11), Xy, X,, X;are the states and a, b are unknown state parameters.
As the slave system for the synchronization, we consider the new chaotic jerk system
yi =Y.
by @2
y=-y —ay —by’y +yy’-y*+u
3 1 3 1 3 12 1

In(12), Y., Y,, Y;are the states and U is a backstepping control to be designed.
The synchronization error between the jerk systems (11) and (12) can be classified as follows:

E1=Y1— Xy €=Y,—Xy, €=Y3—X3 (13)
We find the error dynamics as follows:

6, =g,

Jéz =& (14)

[(:33: — - ae ;—b(y3y ;= X3X ) + Y y5— X ¥ YA+ X3+ u
We denote A(t), B(t) as estimates for the unknown parameters a, b, respectively.
The error between the parameters and their estimates is defined as follows:

e,(t)=a—A(t), e, (t)=b—B(t) (15)

It is easy to see that
{e'a =-A(t) (16)

& =-B()

Using adaptive backstepping control, we establish a key result of this section.
Theorem 1. The master and slave chaotic jerk systems represented by (11) and (12) with unknown
parameters a and b are globally and exponentially synchronized by means of the adaptive
backstepping controller using estimates A(t) and B(t) given by
u=-2e —-5e —[3-A(t)]e + B(t)(yzy - X2 )— yy2+xx2+y —x®—Ko (17)
1 2 3 1 3 1 3 1 2 12 1 1 3

where K > Qis a gain constant,



G3 =26, +2€, +e, (18)
and the update law for the estimates A(t), B(t) is given by
[A=-c.g, (19)
B= —csa(yfy3 —xfxa)

Proof. The result is proved via backstepping control method, which is a recursive procedure in
Lyapunov stability theory. We start with the Lyapunov function

V,(c,)=050; (20)
where 1 = €1.
Differentiating V1 along the error dynamics (14), we get

V =co. =ee =—e’+e (e +e ) (1)
1 11 12 1 1 1 2
We define
Using Eq. (22), we can simplify Eq. (21) as
V,=-62+c6 0o, (23)
Next, we define the Lyapunov function
V (6.6 )=V (c)+0506°=05(c”+c?) (24)
2 1 2 1 1 2 1 2
Differentiating V2 along the error dynamics (14), we get
V =—c’-c’+c (2 +2e +e) (25)
2 1 2 2 1 2 3
We define
Using (26), we can express (25) as
V =—6’-—c’+0 o (27)
2 1 2 2 3

To simplify the notation, we set ¢ = (61,02,03).
Finally, we define the quadratic Lyapunov function

V(c,6s,6) =05(cf +55+0%)+05(es+€) (28)

It is evident that V is a positive definite function on R®.
Differentiating V along the error dynamics (14) and (16), we get

V=-0!-0-62+5,T -e,A-¢B (29)
where

T =03+02 +03 =03 +02 + (261 + 262 +€3) (30)
A simple calculation shows that

T =2e +5e +(3-a)e —b(yzy —x%x )+ yy —xx* -y +x3+u (31)

1 2 3 1 3 1 3 1 2 12 1 1

Substituting the value of u from Eqg. (17) into Eq. (31), we obtain

T =-[a—A(t)]e —[b-B®)]( y2y —x2x)— Ko (32)

3 1 3 1 3

We can simplify Eq. (32) by using the definitions given in Eg. (15) as follows:

T :_eaea_eb(YEYS, —XfX3)— Ko, (33)
Substituting the value of T from Eqg. (33) into Eq. (29), we get

\ =_012 _022 -1+ K)Gg +ea(_63e3 - A)+eb|:_c3(y12y3 —X12X3)— B] (34)

Implementing the parameter update law (19) into Eq. (34), we get



V =-c] -c. - (1+ K)o’ (35)
which is a negative semi-definite function on R>.
Thus, by Barbalat’s lemma [23] in Lyapunov stability theory, we conclude that o(t)—>0
exponentially as t — oco. Hence, it follows that e(t) > 0as t — oo.
This completes the proof.
For numerical plots, we take the constants (a,b)as in the chaotic case, viz. (a,b) = (2,0.2).

We take the gainas K =10.
The initial conditions of the master jerk system (11) are picked as

x1(0) =2.6, x2(0)=0.3, x3(0) =1.2 (36)
The initial conditions of the slave jerk system (12) are taken as

y1(0) =17, y2(0)=3.8, y3(0)=4.9 (37)
The initial conditions of the parameter estimates are taken as

A(0)=2.8, B(0)=7.4 (38)

Figure 8 shows the global chaos synchronization of the chaotic jerk systems (11) and (12).

Xl
.......... v,
5] 8 10
*2
.......... v,
|
B 7 a 9 10
T
Xy
---------- ys
]
-5 1 1 1
4] 1 2 3 =] 7 a =] 10

Time (sec)
Figure 8 Synchronization of the chaotic jerk systems (11) and (12)

5. Circuit Implementation of the New Chaotic Jerk System

In this work, we describe a realization of theoretical jerk model (4) by using electronic components.
As shown in Figure 9, the circuit includes three op-amp integrator circuits based on three operational
amplifiers (U1A, U2A, U3A), three inverting amplifiers (U5A, U6A, U7A) which are implemented
with the operational amplifier TLO82CD and five multipliers by using AD633JN.

'(I'he cilrcuital equations of the designed jerk circuit are given by

X=cR (39)
11
T
% = ——X
CR,”
1 1ox,— 1 xoxg+ 1 2 1 s
\L&:cherR 100C R 100C R XX, —1g9€-R-%:
3



where x , y, and z are the voltages across the capacitors C;, C, and Cs, respectively. Equations (39)
match Egs. (1) when the circuit components are selected as follows: Rs = 50 kfi, Rs =5 kfi, Re = R7 =
1 kﬁ, Ri=R,=R3=Rg=Rg =Ry = Ri1 =R = Ri3 =100 kﬁ, Ci1=C,=Cs3=1nF. MultiSIM phase

portraits of the circuit are represented in Figure 10. Once more a very good gualitative agreement can
be observed between numerical simulations (see Figure 1) and MultiSIM results (see Figure 10).
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Figure 10. MultiSIM chaotic attractors of the new chaotic jerk system (4)
(@) x1- x2 plane (b) x2- X3 plane and (c) xi-xs plane.

6. Conclusions

A new chaotic jerk system with three cubic nonlinearities is proposed in this paper. The dynamical
properties of the new jerk system are described in terms of phase portraits, Lyapunov exponents,
Kaplan-Yorke dimension, symmetry, dissipativity, etc. Also, a detailed dynamical analysis of the jerk
system was done using bifurcation diagram and Lyapunov exponents, and we exhibited coexisting
chaotic attractors for the new jerk system. The adaptive backstepping-based synchronization of the

10




new chaotic jerk system with itself was designed. Furthermore, an electronic circuit realization of the
new jerk system was shown to confirm the feasibility of the jerk system.
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Abstract. A 3-D new chaotic jerk system with three cubic nonlinearities is proposed in this
paper. The dynamical properties of the new jerk system are described in terms of phase
portraits, Lyapunov exponents, Kaplan-Yorke dimension, symmetry, dissipativity, etc. Also, a
detailed dynamical analysis of the jerk system has been carried out with bifurcation diagram
and Lyapunov exponents. As an engineering application, adaptive synchronization of the new
chaotic jerk system with itself is designed via backstepping control method. Furthermore, an
electronic circuit realization of the new chaotic jerk system is presented in detail to confirm the
feasibility of the theoretical chaotic jerk model.

1. Introduction
Chaos theory deals with chaotic systems which are nonlinear dynamical systems exhibiting high
sensitivity to small changes in initial conditions [1-2]. Chaotic systems are very useful in many
applications in science and engineering such as temperature model [3], biology [4], physics [5],
cellular neural networks [6], satellite [7], robotics [8], encryption [9], finance systems [10], circuits
[11-12], etc.
In physics, a jerk ODE can be written as the third order dynamics

d’x dx d’x 1

F_(/,[XH,FJ (1)

. dx _d’X . X

In (1), X(t) stands for the displacement, E the velocity, Wthe acceleration and W the jerk.

Thus, we call the ODE (1) as the jerk differential equation.
For qualitative analysis, it is convenient to express the third-order ODE (1) in a system form. This is
achieved by defining the following phase variables:

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
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X, (t) = x(t)
X, () = X(t) 2
X, (t) = X(t)

Thus, the phase variables in (2) can be viewed as the displacement, velocity and acceleration,
respectively. Using them, we can express the jerk differential equation (1) as follows:

X =%
%, =%, 3)

X5 = (X, X5, X3)
Many jerk systems have been found in the chaos literature [13-17]. Jerk systems have important
applications in mechanical engineering [1-2]. Some famous jerk systems are Sprott systems [13], Li
system [14], Elsonbaty system [15], Coullet system [16], Vaidyanathan systems [17], etc.

In this research paper, we report the finding of a new chaotic jerk system with three cubic
nonlinearities. We describe the phase plots of the jerk system and do a rigorous dynamic analysis by
finding bifurcation diagrams, Lyapunov exponents, Kaplan-Yorke dimension, symmetry analysis, etc.

As a control application, we derive new results for the adaptive synchronization of the new chaotic
jerk system with itself with unknown parameters. Synchronization of chaotic systems deals with the
control problem of finding suitable feedback control laws so as to asymptotically synchronize the
respective trajectories of a pair of chaotic systems called as master and slave systems. We use
backstepping control method for achieving global chaos synchronization of the new chaotic jerk
system with itself. Backstepping control method is a recursive procedure used for stabilizing nonlinear
dynamical systems.

Section 2 describes the new chaotic jerk system, its phase plots and Lyapunov exponents. Section 3
describes the dynamic analysis of the new chaotic jerk system. Section 4 describes the backstepping-
based adaptive synchronization of the new chaotic jerk system with itself. Furthermore, an electronic
circuit realization of the new chaotic system is presented in detail in Section 5. The circuit
experimental results of the new chaotic jerk system in Section 5 agreement with the numerical
simulations via MATLAB obtained in Section 2. Section 6 contains the main conclusions.

2. A new chaotic jerk system with three cubic nonlinearities
In this work, we report a new 3-D chaotic jerk system given by the dynamics

e )

X =X

Xy ==X, — %, — XX, + XX X
where X, X,, X, are state variables and a, b are positive constants.
In this paper, we show that the jerk system (1) is chaotic for the parameter values

a=2, b=02 3)

For numerical simulations, we take the initial values of the jerk system (4) as X (0) =(0.2,0.2,0.2).
Figure 1 shows the phase portraits of the strange attractor of the new chaotic jerk system (4) for
(a,b) =(2,0.2) and initial conditions X (0)=(0.2,0.2,0.2). Figure 1 (a) shows the 3-D phase
portrait of the new chaotic jerk system (4). Figures 1 (b)-(c) show the projections of the new chaotic
system (4) in (Xl, X, ), (Xz, X3) and (Xl, X, ) coordinate planes, respectively.
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(a) (b}

Figure 1. Plots of the chaotic jerk system (4) for (,b) =(2,0.2) and X (0) =(0.2,0.2,0.2)
For the rest of this section, we take the values of the parameters aand b as in the chaotic case (5), i.e.
(a,b) = (2,0.2)

The equilibrium points of the new chaotic jerk system (4) are obtained by solving the system of
equations

X, =0 (6a)
X, =0 (6b)
—X, —aX, —bxZx, + X x5 —x> =0 (6¢)
From (6a) and (6b), we deduce that X, = X, =0.
Substituting these in (6¢), we obtain —X; (1—!— Xlz) = 0. This gives X, =0.
Hence, E; =(0,0,0)is the unique equilibrium of the chaotic jerk system (4).
The Jacobian matrix of the new jerk system (4) at E; =(0,0,0) is obtained as
0 1 0 7
J={0 0 1 7
-1 0 -2

The Jacobian matrix J has the spectral values —2.2056, 0.1028 + 0.6655i.

This shows that the equilibrium point Eis a saddle-focus and unstable.
We note that the new chaotic system (4) is invariant under the coordinates transformation
(X1!X2’X3)'_)(_X1’_X2'_X3) ®)
for all values of the parameters. This shows that the new chaotic system (4) has point-reflection
symmetry about the equilibrium E; = (0,0, 0).
For the parameter values as in the chaotic case (5) and the initial state X (0)=(0.2,0.2,0.2), the
Lyapunov exponents of the new jerk system (4) are determined using Wolf’s algorithm as
LE, =0.1680, LE, =0, LE, =-2.6705 )
The jerk system (4) is chaotic since LE, =0.1680 > 0. Thus, the system (4) exhibits a self-excited

strange chaotic attractor. Also, we note that the sum of the Lyapunov exponents in (9) is negative. This
shows that the jerk system (4) is dissipative.
The Kaplan-Yorke dimension of the jerk system (4) is determined as
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LE, + LE,
|LE;|

which indicates the high complexity of the chaotic jerk system (4).

Figure 2 shows the Lyapunov exponents of the new chaotic jerk system (4) with self-excited, strange

chaotic attractor.

Dy =2+ =2.0629, (10)

—LE =01680

—LE, =0 ]
LE, =-2.6705

Lyapunov exponents

0 2 4 6 8 10
Time (sec) «10?

Figure 2. Lyapunov exponents of the new chaotic jerk system (4) for (a,b) =(2,0.2)

3. Bifurcation Analysis for the New Chaotic Jerk System
In this section, we describe a bifurcation analysis for the new chaotic jerk system (4) introduced in
Section 2. Bifurcation analysis is an important topic for understanding chaotic systems [18-22].

Some sample results are plotted to verify the reversed period-doubling route to chaos in Figure 3.
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Figure 3. Some sample plots of the jerk system (4) for different values of a when we fix b =0.2
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Next, we fix b =0.2, the initial state as X (0) =(0.2,0.2,0.2) and vary ain [2,3].

From the bifurcation diagram given in Figure 4, we see that new chaotic jerk system (4) exhibits
chaos, period, reversed period-doubling route, as well as several periodic windows. Note that there is a
large period-3 periodic window.

Lyapunov exponents

2 22 24 26 28 3 2 22 24 2.6 28 3
a a

Figure 4. Bifurcation diagram and Lyapunov exponents for the new chaotic jerk
system (4) when we fix b =0.2and vary ain the interval [2,3]

Next, we fix a=2,initial state as X(0)=(0.2,0.2,0.2)and vary bin [0.2,0.45]. The
corresponding bifurcation diagram and Lyapunov exponents for the new chaotic jerk system (4) are
shown in Figure 5. Obviously, from the bifurcation diagram, one can get that the system shows a
reversed period-doubling route to chaos in the whole region. Note that there is a large period-3
periodic window.

o

—LEl
3 —1LE2
—LE3

Lyapunov exponents

- -5
E)_Z 0.25 03 035 04 045 0.2 025 03 0.35 0.4 0.45
b b

Figure 5. Bifurcation diagram and Lyapunov exponents for the new chaotic jerk

system (4) when we fix @ =2and vary D in the interval [0.2,0.45]
Next, we describe our results for coexisting attractors. We note that the blue color denotes the
trajectory of the new chaotic jerk system (4) starting from X, =(0.2,0.2,0.2) and the red color

denotes the trajectory of the new chaotic jerk system (4) starting from Y, = (-0.2,-0.2,-0.2).

We fix b=0.2and vary ain the interval [2,3]. As can be seen from the bifurcation diagram given in
Figure 6, there exists coexisting attractors in the region of [2.75,2.9].

6

"2 2.2 24 2.6 28 3
a

Figure 6. Bifurcation diagram for the new chaotic jerk system
(4) when we fix b=0.2and vary ain the interval [2,3].
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@ a=28b=02 (b) a=2.86,b=0.2

Figure 7. (a) When a = 2.8, coexisting chaotic attractors, and (b) when a=2.86,
coexisting period-2 attractors for the new chaotic jerk system (4). We fix b =0.2.

4. Backstepping-Based Global Chaos Synchronization of the Chaotic Jerk Systems
In this section, we use backstepping control method to achieve global chaos synchronization of the
new chaotic jerk systems.
As the master system for the synchronization, we consider the new chaotic jerk system
X =X,
X, = X, (11)

Xy ==X — % XX, + %G X
In (11), X, X,, X;are the states and a, b are unknown state parameters.
As the slave system for the synchronization, we consider the new chaotic jerk system

Y1=Y,

Y2 =Ys 12)
Yo ==Y —ay; —byiy; + VY, —yi +u
In (12), Y,,Y,, Y, are the states and U is a backstepping control to be designed.
The synchronization error between the jerk systems (11) and (12) can be classified as follows:
E=Y1=X =Y, X, &=Y;—X% (13)
We find the error dynamics as follows:
i (14)
6, =g,
€=~ —ae; ~b(Y[Y; =X\ X) + Yi¥; = XX, = y; + X +U
We denote A(t), B(t) as estimates for the unknown parameters a, b, respectively.
The error between the parameters and their estimates is defined as follows:
e,(t)=a—A(t), e,(t)=b—B(t) (15)
It is easy to see that
{e'a =-A() (16)
&, =-B()

Using adaptive backstepping control, we establish a key result of this section.

Theorem 1. The master and slave chaotic jerk systems represented by (11) and (12) with unknown
parameters aand Dare globally and exponentially synchronized by means of the adaptive
backstepping controller using estimates A(t) and B(t) given by

u=—2¢ —58, —[3— A(t) &, + B(t) (V7 ¥s = X005 )= YuYs + X + Y5 =% — Ko, (17)

where K > Qis a gain constant,
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o, =26 +2¢,+6, (18)
and the update law for the estimates A(t), B(t) is given by
A = —0'363 (1 9)
B :—0'3(Y12y3 _X12X3)

Proof. The result is proved via backstepping control method, which is a recursive procedure in
Lyapunov stability theory. We start with the Lyapunov function

V,(6,) =0.5 o7 (20)
where o, =€,.

Differentiating V, along the error dynamics (14), we get

V,=0,6,=¢ee, =—€ +¢ (e +8,) 1)
We define

o,=¢€+e, (22)
Using Eq. (22), we can simplify Eq. (21) as

\/1 =—0} +0,0, (23)
Next, we define the Lyapunov function

V,(0,,0,)=V,(c,) +0.50; =O.5(<712 +022) (24)
Differentiating V, along the error dynamics (14), we get

V, =—0? -0} +0,(26, +2¢,+8&,) (25)
We define

o, =26 +2¢,+6, (26)
Using (26), we can express (25) as

\/2 =—0. -0+ 0,0, (27)

To simplify the notation, we set o = (07, 0,,03).
Finally, we define the quadratic Lyapunov function
V(o.e,.6,)=05(c} +0; +03 )+0.5(e +¢f ) (28)
It is evident that V is a positive definite function on R”.
Differentiating V along the error dynamics (14) and (16), we get

V=-0-0.~0c.+0o,T —e,A-¢B (29)
where

T=0,+0,+6,=0,+0,+(28 +2¢,+e,) (30)
A simple calculation shows that

T =26, +56, +(3—a)e, —b( Yy, — XX )+ V,¥5 — X6 — Y7 + X +U (31)
Substituting the value of U from Eq. (17) into Eq. (31), we obtain

T =—{a-A®M)le, ~[b-BMI(y v, ~ %% )~ Ko, (32)
We can simplify Eq. (32) by using the definitions given in Eq. (15) as follows:

T :—eae3—eb(yfy3—xfx3)—Ko-3 (33)
Substituting the value of T from Eq. (33) into Eq. (29), we get

V =—07 — 02 —(1+ K)of +&, (08, — A) +e, [ —o (¥, — 0%, ) - B (34)

Implementing the parameter update law (19) into Eq. (34), we get
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V =-0? —c’ —(1+K)o? (35)
which is a negative semi-definite function on R°.
Thus, by Barbalat’s lemma [23] in Lyapunov stability theory, we conclude that o(t) —0
exponentially as t — oo, Hence, it follows that e(t) — Oas t — oo,

This completes the proof.
For numerical plots, we take the constants (@,0)as in the chaotic case, viz. (@,b) =(2,0.2).

We take the gain as K =10.
The initial conditions of the master jerk system (11) are picked as

X (0)=2.6, x,(0)=0.3, x,(0)=1.2 (36)
The initial conditions of the slave jerk system (12) are taken as

y,(0)=1.7, y,(0)=3.8, y,(0)=4.9 (37)
The initial conditions of the parameter estimates are taken as

A(0)=2.8, B(0)=7.4 (38)

Figure 8 shows the global chaos synchronization of the chaotic jerk systems (11) and (12).

X1
.......... v,
& 8 10
*2
.......... Yz
|
E T g8 =] 10
T
)fs .
.......... Vs
L] 1 2 3 =] T a ] 10

4 &
Time {sec)
Figure 8 Synchronization of the chaotic jerk systems (11) and (12)

5. Circuit Implementation of the New Chaotic Jerk System
In this work, we describe a realization of theoretical jerk model (4) by using electronic components.
As shown in Figure 9, the circuit includes three op-amp integrator circuits based on three operational
amplifiers (U1A, U2A, U3A), three inverting amplillers (U5A, UBA, U7A) which are implemented
with the operational amplilJer TLO82CD and [ve multipliers by using AD633JN.
The circuital equations of the designed jerk circuit are given by

1

X =——1X,
CR, 39)
X, = L X
2 CZ RZ 3
’ 1 1 1 2 1 2 1 3
Xy =— X, — Xy — X, Xy + X, X, — X,
C,R, C,R, 100C,R, 100C,R, 100C,R,
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where x , ¥y, and z are the voltages across the capacitors C,, C, and C;, respectively. Equations (39)
match Eqgs. (1) when the circuit components are selected as follows: R, =50 k[1, Rs=5k[], Rg=R, =

1kl,R;=R,=R3=Rg =Ry =Ry =R;; =R;;, =R;3=100k(J,C, =C,=C;= 1 nF. MuluSIM phase
portralts of the circuit are represented in Figure 10. Once more a very good qualitative agreement can
be observed between numerical simulations (see Flgure 1) and MultiSIM results (see Flgure 10)

R8

Figure 9. The electronic circuit schematic of new chaotic jerk system
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Figure 10. MultiSIM chaotic attractors of the new chaotic jerk system (4)
(a) x,- x, plane (b) x,- x; plane and (c) x,-x; plane.

6. Conclusions

A new chaotic jerk system with three cubic nonlinearities is proposed in this paper. The dynamical
properties of the new jerk system are described in terms of phase portraits, Lyapunov exponents,
Kaplan-Yorke dimension, symmetry, dissipativity, etc. Also, a detailed dynamical analysis of the jerk
system was done using bifurcation diagram and Lyapunov exponents, and we exhibited coexisting
chaotic attractors for the new jerk system. The adaptive backstepping-based synchronization of the

10
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new chaotic jerk system with itself was designed. Furthermore, an electronic circuit realization of the
new jerk system was shown to confirm the feasibility of the jerk system.
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